120 research outputs found

    Challenges to oligonucleotides-based therapeutics for Duchenne muscular dystrophy

    Get PDF
    Antisense oligonucleotides are short nucleic acids designed to bind to specific messenger RNAs in order to modulate splicing patterns or inhibit protein translation. As such, they represent promising therapeutic tools for many disorders and have been actively developed for more than 20 years as a form of molecular medicine. Although significant progress has been made in developing these agents as drugs, they are yet not recognized as effective therapeutics and several hurdles remain to be overcome. Within the last few years, however, the prospect of successful oligonucleotides-based therapies has moved a step closer, in particular for Duchenne muscular dystrophy. Clinical trials have recently been conducted for this myopathy, where exon skipping is being used to achieve therapeutic outcomes. In this review, the recent developments and clinical trials using antisense oligonucleotides for Duchenne muscular dystrophy are discussed, with emphasis on the challenges ahead for this type of therapy, especially with regards to delivery and regulatory issues

    Hypodynamia Alters Bone Quality and Trabecular Microarchitecture

    Get PDF
    Disuse induces a rapid bone loss in humans and animals; hypodynamia/sedentarity is now recognized as a risk factor for osteoporosis. Hypodynamia also decreases bone mass but its effects are largely unknown and only few animal models have been described. Hypodynamic chicken is recognized as a suitable model of bone loss but the effects on the quality have not been fully explored. We have used ten chickens bred in a large enclosure (FREE group); ten others were confined in small cages with little space to move around (HYPO group). They were sacrificed at 53 days and femurs were evaluated by microcomputed tomography (microCT) and nanoindentation. Sections (4 µm thick) were analyzed by Fourier Transform InfraRed Microspectroscopy (FTIR) to see the effects on mineralization and collagen and quantitative backscattered electron imaging (qBEI) to image the mineral of the bone matrix. Trabecular bone volume and microarchitecture were significantly altered in the HYPO group. FTIR showed a significant reduction of the mineral-to-matrix ratio in the HYPO group associated with an increase in the carbonate content and an increase in crystallinity (calculated as the area ratio of subbands located at 1020 and 1030 cm(-1)) indicating a poor quality of the mineral. Collagen maturity (calculated as the area ratio of subbands located at 1660 and 1690 cm(-1)) was significantly reduced in the HYPO group. Reduced biomechanical properties were observed at the tissue level. Confined chicken represents a new model for the study of hypodynamia because bone changes are not created by a surgical lesion or a traumatic method. Animals have a reduced bone mass and present with an altered bone matrix quality which is less mineralized and whose collagen contains less crosslinks than in control chicken

    β-TCP granules mixed with reticulated hyaluronic acid induce an increase in bone apposition

    Get PDF
    International audienceβ beta-tricalcium phosphate (β-TCP) granules are suitable for repair of bone defects. They have an osteoconductive effect shortly after implantation. However, dry granules are difficult to handle in the surgical room because of low weight and lack of cohesion. Incorporation of granules in a hydrogel could be a satisfactory solution. We have investigated the use of hyaluronic acid (HyA) as an aqueous binder of the granules. β-TCP granules were prepared by the polyurethane foam technology. Commercially available linear (LHya) and reticulated hyaluronic acid (RHyA) in aqueous solution were used to prepare a pasty mixture that can be handled more easily than granules alone. Thirteen New Zealand White rabbits (3.5–3.75 kg) were used; a 4 mm hole was drilled in each femoral condyle. After flushing, holes were filled with either LHyA, RHyA, dry β-TCP granules alone, β-TCP granules + LHyA and β-TCP granules + RHyA. Rabbits were allowed to heal for one month, sacrificed and femurs were harvested and analysed by microCT and histomorphometry. The net amount of newly formed bone was derived from measurements done after thresholding the microCT images for the material and for the material+bone. LHyA and RHyA did not result in healing of the grafted area. LHyA was rapidly eluted from the grafted zone but allowed deposition of more granules, although the amount of formed bone was not significantly higher than with β-TCP granules alone. RHyA permitted the deposition of more granules which induced significantly more bone trabeculae without inducing an inflammatory reaction. RHyA appears to be a good vehicle to implant granules of β-TCP, since HyA does not interfere with bone remodeling

    Osteoconductive properties of poly(96L/4D-lactide)/beta-tricalcium phosphate in long term animal model

    Get PDF
    The objective of this study was to determine the effect of calcium phosphate mineral content on the bone in-growth at the expense of composite of co-polylactide polymer charged with 2 different ratios of β-TCP granules (10 and 24 w-% of β-TCP). The evaluation was realized in a long term rabbit bone model. After 24, 48 and 76 weeks, the implants were examined by micro CT, scanning electron microscopy (SEM) using backscattered electron (BSE) and light microscopy (polarized and blue light microscopy). No foreign body reaction was detected during the 76 weeks follow-up in any of the test samples. Polymer hydrolysis began at approximately 24 weeks, by 76 weeks, the pure polymer implant had begun to release P(96L/4D)LA particles and show signs of peripheral localized bone resorption. A decrease in the amount of CaP was noticed between 24 and 76 weeks in both 10 wt-% and 24 wt-% β-TCP/P(96L/4D)LA composites. The study showed that the highest bone in-growth was with 24 wt-% β-TCP/P(96L/4D)LA composite. Bone in-growth and mineralization were evident for the composites associated with specific peripheral bone architecture. Fluorescent labelling demonstrated high bone in-growth and remodeling at the interface, while for pure co-polymer no bone remodeling or bone activity was maintained after 48 weeks. The study demonstrated the positive effect of calcium phosphate content into P(96L/4D)LA. This kind of composite is a suitable resorbable osteoconductive matrix, which provides long term stability required for ligament fixation device

    Reconstruction of irradiated bone segmental defects with a biomaterial associating MBCP+®, microstructured collagen membrane and total bone marrow grafting: An experimental study in rabbits

    Get PDF
    The bone tissue engineering models used today are still a long way from any oncologic application as immediate postimplantation irradiation would decrease their osteoinductive potential. The aim of this study was to reconstruct a segmental critical size defect in a weight-bearing bone irradiated after implantation. Six white New Zealand rabbits were immediately implanted with a biomaterial associating resorbable collagen membrane EZ® filled and micro-macroporous biphasic calcium phosphate granules (MBCP+®). After a daily schedule of radiation delivery, and within 4 weeks, a total autologous bone marrow (BM) graft was injected percutaneously into the center of the implant. All the animals were sacrificed at 16 weeks. Successful osseous colonization was found to have bridged the entire length of the defects. Identical distribution of bone ingrowth and residual ceramics at the different levels of the implant suggests that the BM graft plays an osteoinductive role in the center of the defect. Periosteum-like formation was observed at the periphery, with the collagen membrane most likely playing a role. This model succeeded in bridging a large segmental defect in weight-bearing bone with immediate postimplantation fractionated radiation delivery. This has significant implications for the bone tissue engineering approach to patients with cancer-related bone defects

    Biofunctionality of MBCP ceramic granules (TricOs™) plus fibrin sealant (Tisseel®) versus MBCP ceramic granules as a filler of large periprosthetic bone defects: an investigative ovine study

    Get PDF
    We aimed to quantify bone colonization toward an untreated titanium implant with primary stability following filling of the defect with micromacroporous biphasic calcium phosphate (MBCP) granules (TricOs) or MBCP granules mixed with fibrin sealant (Tisseel). Medial arthrotomy was performed on the knees of 20 sheep to create a bone defect (16 mm deep; 10 mm diameter), followed by anchorage of a titanium screw. Defects were filled with TricOs or TricOs-Tisseel granules, a perforated MBCP washer, a titanium washer and titanium screw. Sheep were euthanized at 3, 6, 12 and 26 weeks. From Week 12 onwards, the percentage of bone in contact with the 8 mm anchorage part of the screw increased in both groups, confirming its primary stability. At 26 weeks, whereas bone colonization was similar in both groups, biodegradation of ceramic was more rapid in the TricOs-Tisseel group (P = 0.0422). The centripetal nature of bone colonization was evident. Bone contact with the titanium implant surface was negligible. In conclusion, the use of a model that reproduces a large metaphyseal bone defect around a titanium implant with primary stability, filled with a mixture of either TricOs ceramic granules or TricOs granules mixed with Tisseel fibrin sealant, suggests that the addition of fibrin to TricOs enhances bone filling surgical technology

    A non-steroidal anti-inflammatory drug (ketoprofen) does not delay β-TCP bone graft healing

    Get PDF
    β-Tricalcium phosphate (β-TCP) is a suitable biomaterial in oral and maxillofacial surgery since it can induce a rapid proliferation of woven bone. Granules, prepared by the polyurethane foam method, were implanted in critical size defects performed in the femoral condyles of New Zealand rabbits. Animals were studied after 8 and 28 days. Ketoprofen (a non-steroidal anti-inflammatory drug (NSAID)) was given for 8 and 28 days to evaluate its effects on the healing of the graft. Before euthanasia, the rabbits received an intravenous injection of fluorescent microbeads. Bones were analyzed by microcomputed tomography. β-TCP granules induced metaplastic bone trabeculae as early as 8 days post-surgery. At 28 days, the amount of bone was increased and the biomaterial volume decreased due to simultaneous macrophagic resorption. The amount of macrophages labeled with microbeads was less in the grafted area than in the vicinal intact marrow spaces. Ketoprofen had no effect on the amount of bone formed and on the number of labeled macrophages. The influence of small doses of NSAID, given in a short duration period, did not present deleterious effects on bone graft healing

    Rescue of severely affected dystrophin/utrophin-deficient mice through scAAV-U7snRNA-mediated exon skipping

    Get PDF
    Duchenne muscular dystrophy (DMD) is a severe neuromuscular disorder caused by mutations in the dystrophin gene that result in the absence of functional protein. Antisense-mediated exon skipping is one of the most promising approaches for the treatment of DMD and recent clinical trials have demonstrated encouraging results. However, antisense oligonucleotide-mediated exon skipping for DMD still faces major hurdles such as extremely low efficacy in the cardiac muscle, poor cellular uptake and relatively rapid clearance from circulation, which means that repeated administrations are required to achieve some therapeutic efficacy. To overcome these limitations, we previously proposed the use of small nuclear RNAs (snRNAs), especially U7snRNA to shuttle the antisense sequences after vectorization into adeno-associated virus (AAV) vectors. In this study, we report for the first time the efficiency of the AAV-mediated exon skipping approach in the utrophin/dystrophin double-knockout (dKO) mouse which is a very severe and progressive mouse model of DMD. Following a single intravenous injection of scAAV9-U7ex23 in dKO mice, near-normal levels of dystrophin expression were restored in all muscles examined, including the heart. This resulted in a considerable improvement of their muscle function and dystrophic pathology as well as a remarkable extension of the dKO mice lifespan. These findings suggest great potential for AAV-U7 in systemic treatment of the DMD phenotype

    Developments in injectable multiphasic biomaterials. The performance of microporous biphasic calcium phosphate granules and hydrogels

    Get PDF
    Calcium phosphate bioceramic granules associated with hydrosoluble polymers were developed as bone substitutes for various maxillofacial and orthopaedic applications. These injectable bone substitutes, support and regenerate bone tissue and resorb after implantation. The efficiency of these multiphasic materials is due to the osteogenic and osteoconductive properties of the microporous biphasic calcium phosphate. The associated hydrosoluble polymers are considered as carriers in order to achieve the rheological properties of injectable bone substitutes (IBS). In this study, we used 2 semi synthetic hydrosoluble polymers of polysaccharidic origin. The hydroxy propyl methyl cellulose (HPMC), with and without silane, was combined with microporous BCP granules. The presence of silane induced considerable gelation of the suspension. The 2 IBS used (without gelation, IBS1, with gelation, IBS2) were implanted in critical size femoral epiphysis defects in rabbits. No foreign body reactions were observed in either sample. However, because of the higher density from gelation, cell colonisation followed by bone tissue ingrowth was delayed over time with IBS2 compared to the IBS1 without gelation. The results showed resorption of the BCP granule and bone ingrowth at the expense of both IBS with different kinetics. This study demonstrates that the hydrogel cannot be considered merely as a carrier. The gelation process delayed cell and tissue colonisation by slow degradation of the HPMC Si, compared to the faster release of HPMC with IBS1, in turn inducing faster permeability and spaces for tissue ingrowth between the BCP granules

    Injectable biphasic calcium phosphate bioceramic: The HYDROS® concept

    Get PDF
    A new biphasic calcium phosphate ceramic material has been developed in our laboratory. It is composed of 60% of hydroxyapatite and 40% of β-tricalcium phosphate, based on three granulometries (submicron, round microporous 80-200 mum and macro microporous 0.5-1 mm particles) and hydrated with water leading the formation of a putty filler for bone repair. Biocompatibility and osteogenicity were tested by filling femoral epiphyses critical size bone defect and lumbar muscles in rabbit. After 3, 6 and 12 weeks of implantation, explants were treated for histology. Results revealed the biocompatibility of the material and intensive resorption of the submicron particle fraction followed by important bone ingrowth whereas osteoconduction was provided by the larger particles
    corecore