61 research outputs found

    New Developments in the Embedded Statistical Coupling Method: Atomistic/Continuum Crack Propagation

    Get PDF
    A concurrent multiscale modeling methodology that embeds a molecular dynamics (MD) region within a finite element (FEM) domain has been enhanced. The concurrent MD-FEM coupling methodology uses statistical averaging of the deformation of the atomistic MD domain to provide interface displacement boundary conditions to the surrounding continuum FEM region, which, in turn, generates interface reaction forces that are applied as piecewise constant traction boundary conditions to the MD domain. The enhancement is based on the addition of molecular dynamics-based cohesive zone model (CZM) elements near the MD-FEM interface. The CZM elements are a continuum interpretation of the traction-displacement relationships taken from MD simulations using Cohesive Zone Volume Elements (CZVE). The addition of CZM elements to the concurrent MD-FEM analysis provides a consistent set of atomistically-based cohesive properties within the finite element region near the growing crack. Another set of CZVEs are then used to extract revised CZM relationships from the enhanced embedded statistical coupling method (ESCM) simulation of an edge crack under uniaxial loading

    A Continuum-Atomistic Analysis of Transgranular Crack Propagation in Aluminum

    Get PDF
    A concurrent multiscale modeling methodology that embeds a molecular dynamics (MD) region within a finite element (FEM) domain is used to study plastic processes at a crack tip in a single crystal of aluminum. The case of mode I loading is studied. A transition from deformation twinning to full dislocation emission from the crack tip is found when the crack plane is rotated around the [111] crystallographic axis. When the crack plane normal coincides with the [112] twinning direction, the crack propagates through a twinning mechanism. When the crack plane normal coincides with the [011] slip direction, the crack propagates through the emission of full dislocations. In intermediate orientations, a transition from full dislocation emission to twinning is found to occur with an increase in the stress intensity at the crack tip. This finding confirms the suggestion that the very high strain rates, inherently present in MD simulations, which produce higher stress intensities at the crack tip, over-predict the tendency for deformation twinning compared to experiments. The present study, therefore, aims to develop a more realistic and accurate predictive modeling of fracture processes

    Multiscale Modeling of Damage Processes in fcc Aluminum: From Atoms to Grains

    Get PDF
    Molecular dynamics (MD) methods are opening new opportunities for simulating the fundamental processes of material behavior at the atomistic level. However, current analysis is limited to small domains and increasing the size of the MD domain quickly presents intractable computational demands. A preferred approach to surmount this computational limitation has been to combine continuum mechanics-based modeling procedures, such as the finite element method (FEM), with MD analyses thereby reducing the region of atomic scale refinement. Such multiscale modeling strategies can be divided into two broad classifications: concurrent multiscale methods that directly incorporate an atomistic domain within a continuum domain and sequential multiscale methods that extract an averaged response from the atomistic simulation for later use as a constitutive model in a continuum analysis

    An Embedded Statistical Method for Coupling Molecular Dynamics and Finite Element Analyses

    Get PDF
    The coupling of molecular dynamics (MD) simulations with finite element methods (FEM) yields computationally efficient models that link fundamental material processes at the atomistic level with continuum field responses at higher length scales. The theoretical challenge involves developing a seamless connection along an interface between two inherently different simulation frameworks. Various specialized methods have been developed to solve particular classes of problems. Many of these methods link the kinematics of individual MD atoms with FEM nodes at their common interface, necessarily requiring that the finite element mesh be refined to atomic resolution. Some of these coupling approaches also require simulations to be carried out at 0 K and restrict modeling to two-dimensional material domains due to difficulties in simulating full three-dimensional material processes. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the standard boundary value problem used to define a coupled domain. The method replaces a direct linkage of individual MD atoms and finite element (FE) nodes with a statistical averaging of atomistic displacements in local atomic volumes associated with each FE node in an interface region. The FEM and MD computational systems are effectively independent and communicate only through an iterative update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM). ESCM provides an enhanced coupling methodology that is inherently applicable to three-dimensional domains, avoids discretization of the continuum model to atomic scale resolution, and permits finite temperature states to be applied

    Finite element based micro-mechanics modeling of textile composites

    Get PDF
    Textile composites have the advantage over laminated composites of a significantly greater damage tolerance and resistance to delamination. Currently, a disadvantage of textile composites is the inability to examine the details of the internal response of these materials under load. Traditional approaches to the study fo textile based composite materials neglect many of the geometric details that affect the performance of the material. The present three dimensional analysis, based on the representative volume element (RVE) of a plain weave, allows prediction of the internal details of displacement, strain, stress, and failure quantities. Through this analysis, the effect of geometric and material parameters on the aforementioned quantities are studied

    Recent Advances in Durability and Damage Tolerance Methodology at NASA Langley Research Center

    Get PDF
    Durability and damage tolerance (D&DT) issues are critical to the development of lighter, safer and more efficient aerospace vehicles. Durability is largely an economic life-cycle design consideration whereas damage tolerance directly addresses the structural airworthiness (safety) of the vehicle. Both D&DT methodologies must address the deleterious effects of changes in material properties and the initiation and growth of damage that may occur during the vehicle s service lifetime. The result of unanticipated D&DT response is often manifested in the form of catastrophic and potentially fatal accidents. As such, durability and damage tolerance requirements must be rigorously addressed for commercial transport aircraft and NASA spacecraft systems. This paper presents an overview of the recent and planned future research in durability and damage tolerance analytical and experimental methods for both metallic and composite aerospace structures at NASA Langley Research Center (LaRC)

    A Method for Combining Experimentation and Molecular Dynamics Simulation to Improve Cohesive Zone Models for Metallic Microstructures

    Get PDF
    Fracture processes within a material begin at the nanometer length scale at which the formation, propagation, and interaction of fundamental damage mechanisms occur. Physics-based modeling of these atomic processes quickly becomes computationally intractable as the system size increases. Thus, a multiscale modeling method, based on the aggregation of fundamental damage processes occurring at the nanoscale within a cohesive zone model, is under development and will enable computationally feasible and physically meaningful microscale fracture simulation in polycrystalline metals. This method employs atomistic simulation to provide an optimization loop with an initial prediction of a cohesive zone model (CZM). This initial CZM is then applied at the crack front region within a finite element model. The optimization procedure iterates upon the CZM until the finite element model acceptably reproduces the near-crack-front displacement fields obtained from experimental observation. With this approach, a comparison can be made between the original CZM predicted by atomistic simulation and the converged CZM that is based on experimental observation. Comparison of the two CZMs gives insight into how atomistic simulation scales

    Multiscale Modeling of Damage Processes in Aluminum Alloys: Grain-Scale Mechanisms

    Get PDF
    This paper has two goals related to the development of a physically-grounded methodology for modeling the initial stages of fatigue crack growth in an aluminum alloy. The aluminum alloy, AA 7075-T651, is susceptible to fatigue cracking that nucleates from cracked second phase iron-bearing particles. Thus, the first goal of the paper is to validate an existing framework for the prediction of the conditions under which the particles crack. The observed statistics of particle cracking (defined as incubation for this alloy) must be accurately predicted to simulate the stochastic nature of microstructurally small fatigue crack (MSFC) formation. Also, only by simulating incubation of damage in a statistically accurate manner can subsequent stages of crack growth be accurately predicted. To maintain fidelity and computational efficiency, a filtering procedure was developed to eliminate particles that were unlikely to crack. The particle filter considers the distributions of particle sizes and shapes, grain texture, and the configuration of the surrounding grains. This filter helps substantially reduce the number of particles that need to be included in the microstructural models and forms the basis of the future work on the subsequent stages of MSFC, crack nucleation and microstructurally small crack propagation. A physics-based approach to simulating fracture should ultimately begin at nanometer length scale, in which atomistic simulation is used to predict the fundamental damage mechanisms of MSFC. These mechanisms include dislocation formation and interaction, interstitial void formation, and atomic diffusion. However, atomistic simulations quickly become computationally intractable as the system size increases, especially when directly linking to the already large microstructural models. Therefore, the second goal of this paper is to propose a method that will incorporate atomistic simulation and small-scale experimental characterization into the existing multiscale framework. At the microscale, the nanoscale mechanics are represented within cohesive zones where appropriate, i.e. where the mechanics observed at the nanoscale can be represented as occurring on a plane such as at grain boundaries or slip planes at a crack front. Important advancements that are yet to be made include: 1. an increased fidelity in cohesive zone modeling; 2. a means to understand how atomistic simulation scales with time; 3. a new experimental methodology for generating empirical models for CZMs and emerging materials; and 4. a validation of simulations of the damage processes at the nano-micro scale. With ever-increasing computer power, the long-term ability to employ atomistic simulation for the prognosis of structural components will not be limited by computation power, but by our lack of knowledge in incorporating atomistic models into simulations of MSFC into a multiscale framework

    Modeling and Characterization of Damage Processes in Metallic Materials

    Get PDF
    This paper describes a broad effort that is aimed at understanding the fundamental mechanisms of crack growth and using that understanding as a basis for designing materials and enabling predictions of fracture in materials and structures that have small characteristic dimensions. This area of research, herein referred to as Damage Science, emphasizes the length scale regimes of the nanoscale and the microscale for which analysis and characterization tools are being developed to predict the formation, propagation, and interaction of fundamental damage mechanisms. Examination of nanoscale processes requires atomistic and discrete dislocation plasticity simulations, while microscale processes can be examined using strain gradient plasticity, crystal plasticity and microstructure modeling methods. Concurrent and sequential multiscale modeling methods are being developed to analytically bridge between these length scales. Experimental methods for characterization and quantification of near-crack tip damage are also being developed. This paper focuses on several new methodologies in these areas and their application to understanding damage processes in polycrystalline metals. On-going and potential applications are also discussed

    Lessons Learned from Recent Failure and Incident Investigations of Composite Structures

    Get PDF
    During the past few decades, NASA Langley Research Center (LaRC) has supported several large-scale failure and incident investigations and numerous requests for engineering consultations. Although various extenuating circumstances contributed to each of these incidents, in all cases, the failure resulted from accumulation and/or propagation of damage that reduced the load carrying capability of the structure to a level below that which was needed to sustain structural loads. A brief overview of various failure and incident investigations supported by LaRC, including some of the computational and experimental methodologies that have been applied, is presented. An important outcome of many of these failure and incident investigations is the development of an improved understanding of not only the state-of-the-art in experimental and analytical methods but also the state-of-the-art in the design and manufacturing processes that may contribute to such failures. In order to provide insight into such large-scale investigations, a series of lessons learned were captured. Awareness of these lessons learned is highly beneficial to engineers involved in similar investigations. Therefore, it is prudent that the lessons learned are disseminated such that they can be built upon in other investigations and in ensuing research and development activities
    • …
    corecore