
To be submitted to International Journal for Numerical Methods in Engineering 

 1

An Embedded Statistical Method for Coupling Molecular Dynamics 
and Finite Element Analyses  

 
E. Saether1∗, V. Yamakov2, and E.H. Glaessgen1 

1NASA Langley Research Center, Hampton, VA 23681, USA 
2National Institute of Aerospace, Hampton, VA 23666, USA 

 
 

SUMMARY 
 

The coupling of molecular dynamics (MD) simulations with finite element methods 

(FEM) yields computationally efficient models that link fundamental material processes 

at the atomistic level with continuum field responses at higher length scales. The 

theoretical challenge involves developing a seamless connection along an interface 

between two inherently different simulation frameworks. Various specialized methods 

have been developed to solve particular classes of problems. Many of these methods link 

the kinematics of individual MD atoms with FEM nodes at their common interface, 

necessarily requiring that the finite element mesh be refined to atomic resolution. Some 

of these coupling approaches also require simulations to be carried out at 0 K and restrict 

modeling to two-dimensional material domains due to difficulties in simulating full three-

dimensional material processes. In the present work, a new approach to MD-FEM 

coupling is developed based on a restatement of the standard boundary value problem 

used to define a coupled domain. The method replaces a direct linkage of individual MD 

atoms and finite element (FE) nodes with a statistical averaging of atomistic 

displacements in local atomic volumes associated with each FE node in an interface 

region. The FEM and MD computational systems are effectively independent and 

communicate only through an iterative update of their boundary conditions. With the use 

of statistical averages of the atomistic quantities to couple the two computational 

schemes, the developed approach is referred to as an embedded statistical coupling 

method (ESCM). ESCM provides an enhanced coupling methodology that is inherently 

applicable to three-dimensional domains, avoids discretization of the continuum model to 

atomic scale resolution, and permits finite temperature states to be applied. 
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1. INTRODUCTION 

 

The emerging field of nanomechanics is providing a new focus in the study of the 

mechanics of materials, particularly that of simulating fundamental atomic mechanisms 

involved in the initiation and evolution of damage. These simulations are commonly 

based on either quantum mechanics (ab-initio, tight-binding (TB) or density-functional 

theory (DFT)) methods, on classical molecular dynamics (MD), or molecular statics 

(MS) methods. These predictions of material behavior at nanometer length scales promise 

the development of physics-based 'bottom-up' multiscale analyses that can aid in 

understanding the evolution of failure mechanisms across length scales. However, 

modeling atomistic processes quickly becomes computationally intractable as the system 

size increases. With current computer technology, the computational demands of 

modeling suitable domain sizes (on the order of hundreds of atoms for quantum 

mechanics-based methods, and potentially billions of atoms for classical mechanics-

based methods) and integrating the governing equations of state over sufficiently long 

time intervals, quickly reaches an upper bound for practical analyses. In contrast, 

continuum mechanics methods such as the finite element method (FEM) provide an 

economical numerical representation of material behavior at length scales in which 

continuum assumptions apply. However, all constitutive relationships, kinematics, etc, 

must be assumed a priori. 

The concept of bridging length scales by concurrently coupling atomistic and 

continuum computational paradigms is particularly attractive as a highly efficient means 

of reducing the computational cost of simulations in cases that require modeling of 

relatively large material domains to capture the complete deformation field, but where 

atomic and subatomic refinement is needed only in very localized regions. Such 

computational issues arise in modeling crack nucleation and propagation, and in 

modeling dislocation formation and interaction. By using coupled models, the size 

limitations of the atomistic simulation can be minimized by embedding an inner region 

where complex dynamic processes and large deformation gradients exist within an outer 

domain where the deformation gradients are small so that a continuum finite element 

method (FEM) representation of the material becomes appropriate.  
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Over the past decade, various methods have been developed to address different 

problems involving atomistically large material domains [1-12]. The most challenging 

problem in developing these coupled methods is the formulation of a seamless 

computational connection along an interface between different material representations. 

A brief review of several representative coupling procedures follows to illustrate the 

current state-of-the-art. 

In coupling atomistic and continuum material representations, the continuity of 

material properties must be maintained while transitioning from individual atoms 

interacting through nonlocal forces to the local stress-strain field formalism of continuum 

mechanics. For crack problems, the early efforts of Gumbsch and Beltz [10] led to the 

development of the Finite Element – Atomistic (FEAt) coupling procedure that combined 

an embedded MD system with a finite element domain. A generalized formulation of 

conventional FEM, which allows FEM nodes to be considered as coarse-grained MD 

“atoms” led to another computational scheme for atomistic-continuum coupling called 

Coarse Grained Molecular Dynamics (CGMD).  A detailed discussion of CGMD is given 

by Rudd and Broughton [11,12].  In yet another coupling method, the Coupling of Length 

Scales (CLS) method [2], the nodes in a finite element model representing the continuum 

region are directly connected to the atoms in an atomistic region forming an interface of 

“pad” atoms. The region of “pad” atoms, used in this and other atomistic-continuum 

coupling methods, serves to minimize surface tension effects on the atoms in the 

atomistic system but also introduces a constraint due to the elasticity of the interface 

region. The constraining effect of this region is generally considered insignificant and is 

ignored.    

The Quasicontinuum (QC) method, reviewed by Miller and Tadmor [6], is formally 

based on an entirely atomistic description of the material domain. However, for 

computational efficiency, regions are identified in which discrete atoms may be grouped 

to form a local continuum. The particular representation used is determined by evaluating 

the magnitude of local deformation gradients and dictates the treatment of  

“representative atoms” or “repatoms.” In the QC formalism, “non-local repatoms” are 

used to represent “real” atoms to form atomistic regions treated by MS/MD methods 

while “local repatoms” are used to define continuum domains by applying both the 
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Cauchy-Born rule [13] and aspects of FEM. The interaction of local and nonlocal 

repatoms at the atomistic/continuum interface leads to the generation of “ghost forces” 

that must be mitigated through the introduction of “dead loads” that are iterated for self-

consistency in the force balance at the interface between subregions.       

Another representative coupling approach is the bridging method of Xiao and 

Belytschko [7] and is based on an overlay approach in which MD and FEM 

representations are superposed in an interface region. This method allows interpolated 

FEM nodal displacements to be associated with atomic displacements in the bridging 

domain.  

The Coupled Atomistic/Dislocation Dynamics (CADD) method of Shilkrot et al. [8] 

is specifically designed to simulate, identify and pass dislocations between atomistic and 

continuum domains. The method was originally limited to 0 K simulations [8]; but has 

been recently extended to include finite temperature effects in the MD system by linking 

the MD to a quasistatic FEM domain through a thermal damping region [9]. Currently, 

CADD uses a two-dimensional material representation due to the complexity of passing 

fully three-dimensional dislocations between the MD and FEM domains.   

A common feature of many of these approaches [1-12] for coupling atomistic and 

continuum representations is the refinement of the finite element (FE) mesh to atomic 

length scales to link the kinematics of the FE nodes to that of the discrete atoms along an 

interface.  In this paper, approaches that relate atoms and FE nodes in a one-to-one 

manner, or through a form of interpolation, will be referred to as direct coupling (DC) 

approaches. 

While DC approaches are straightforward, the fundamental difficulty in their 

development lies in the inherent differences between the atomistic and continuum 

computational models. The physical state of the atomistic region is described through 

nonlocal interatomic forces between discrete atoms of given position and momentum, 

while the physical state of the continuum region is described through continuous stress-

strain fields that reflect local statistical averages of atomic interactions at larger length 

and time scales. In general, the formal connection between continuum and discrete 

quantities can only be achieved through an adequate statistical averaging over scales 

where the discreteness of the atomic structure can be approximated as a continuum. A 
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consequence of some DC interfacing strategies in their initial formulation, such as QC, 

required that the analysis be performed quasistatically at 0 K. Further details of the direct 

coupling methods may be found in the original publications and in several general review 

papers [4-6]. 

 In this paper, an alternative approach to the DC approaches is proposed to construct 

a coupled MD-FEM system. The approach is based on solving a coupled boundary value 

problem (BVP) at the MD/FE interface for a MD region embedded within a FEM 

domain. The method uses statistical averaging over both time and volume in atomistic 

subdomains at the MD/FE interface to determine nodal displacement boundary conditions 

for the continuum FE model. These enforced displacements, in turn, generate interface 

reaction forces that are applied as constant traction boundary conditions [14-16] between 

updates of the FEM solution to the atoms within the localized MD subdomains. Thus, the 

present approach may be described as a local-nonlocal BVP because it relates local 

continuum nodal quantities with nonlocal statistical averages of atomistic quantities over 

selected atomic subdomains. An iterative procedure between the MD statistical 

displacements and the FEM reaction forces ensures continuity at the interface. In this 

way, the problem of redefining continuum variables at the atomic scale is avoided, and 

the developed interface approach links different time and length scales between the MD 

region and FEM domain. 

 With the emphasis of using statistical averages to couple the two computational 

schemes, the developed approach is identified as a statistical coupling (SC) approach. 

Based on the SC approach, the developed MD-FEM coupling method is referred to as the 

embedded statistical coupling method (ESCM). ESCM provides an enhanced coupling 

methodology that is inherently applicable to three-dimensional domains, avoids 

discretization of the continuum model to atomic scale resolution, permits arbitrary 

temperatures to be applied, and treats, in a rigorous manner, the compensation of surface 

effects in the MD system. 

This paper will detail the ESCM approach for coupling MD and FEM computational 

domains for the case of systems that reach thermodynamic equilibrium or evolve 

quasistatically. While there is no principle difficulty in implementing this approach for 
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non-equilibrium systems, it is beneficial to first consider the case of equilibrium 

simulations to illustrate initial applications of this methodology.  

The remainder of this paper is organized as follows. Section 2 describes the structure 

of the coupled MD-FEM model. This includes discussions of the MD and FEM material 

representations, the coupling interface, and the iterative MD-FEM coupling methodology. 

Section 3 presents several validation studies to substantiate the accuracy of the developed 

methodology. Section 4 presents concluding remarks on the overall effectiveness of the 

ESCM. Details of internal force calculations involved in the coupling procedure and a 

discussion of model generation are contained in separate appendices. 

 

2. THE ESCM MODEL 

 

The ESCM approach is developed to reduce computational costs incurred while 

simulating “large” volumes of material by embedding an inner atomistic MD system 

within a surrounding continuum FEM domain.  In principal, the shape of the atomistic 

region may be arbitrary as shown in Figure 1; however, for simplicity, the special case of 

a circular region is utilized in the present work.  Similarly, although any constitutive 

behavior may be assumed for the FEM domain, the present study considers a linear 

elastic continuum. 

The structure of the ESCM model consists of four regions: 1) an Inner MD Region; 2) 

an Interface MD Region wherein MD and finite elements are superimposed; 3) a Surface 

MD Region that does not interact with the FE nodes but is used to compensate for atomic 

free edge effects; and 4) a FEM domain in which standard finite element equations apply. 

These four regions are depicted in Figure 2.  

 

 

Complete details of the ESCM procedure will be presented by discussing general 

aspects of the MD and FEM computational systems, followed by specific details of the 

MD/FE Interface, the Surface MD Region and the MD-FEM coupling procedure.  

 

2.1 MD and FEM model components 
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The Inner MD Region is used to model material phenomena at the atomistic level. 

This Inner MD Region should be large enough to ensure a statistically smooth transition 

from a continuum to an atomistic representation while modeling any of the types of 

processes (e.g., dislocation formation, void nucleation, or crack propagation) that are 

required by the simulation. Together, the Inner, Interface, and Surface MD Regions 

constitute the complete MD system.  

It is important to emphasize that the partitioning of the MD system into different 

regions is not a physical separation of the system.  An atom assigned to a particular 

location freely interacts with atoms in its interaction neighborhood that may reside in a 

different region. Thus, the overall simulation is performed using any conventional MD 

technique without any imposition of direct kinematic constraints. The only difference 

between the three MD regions is that, while the atoms in the Inner MD Region are 

subject only to their interatomic forces, the Interface and Surface MD Regions serve the 

added purpose of facilitating the application of external forces involved in the ESCM 

procedure.  

The addition of a FEM domain permits a large reduction in the computational cost of 

simulations by replacing the atomistic representation with a continuum model in those 

parts of the system where the deformation gradients are small and atomic-level resolution 

is not necessary.  The current application uses the FEM domain to simulate an extended 

material model such that the elastic deformation and load transfer due to applied far-field 

boundary conditions are accurately transferred to the Inner MD Region. The continuum 

field is currently assumed to be static with linear elastic material properties but other 

applications of ESCM might require the incorporation of nonlinear material behavior, 

such as plasticity or general dynamic response, where nonlinear processes generated in 

the Inner MD Region can be propagated into the continuum. 

  

2.2  MD/FE interface 

 

The main role of the MD/FE Interface is to provide a computational linkage between 

the MD region and FEM domain. The atoms that surround a given FE node at the 
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interface are partitioned to form a cell in the Interface MD Region, called an interface 

volume cell (IVC), as shown in Figure 2. A similar partitioning is also applied to the 

Surface MD Region, forming surface volume cells (SVCs). The IVCs compute averaged 

MD displacements at their mass center that are then prescribed as displacement boundary 

conditions to the associated interface finite element nodes. The IVCs need not coincide in 

size or shape with the finite element to which the FE node belongs. In the model 

described in this paper, the IVCs are formed through a Voronoi-type construction [17] by 

selecting those atoms with a common closest finite element node. 

Typically, one finite element at the interface encompasses a region of several hundred 

to several thousand atoms. A lower bound for the number of atoms associated with each 

finite element node is determined by the requirement of obtaining a minimally fluctuating 

average of atomic displacements and minimizing the magnitude of generated gradients in 

the MD region bordering the FEM domain. With an effective average at this scale, the 

discreteness of the atomic structure is homogenized enough so that the FEM domain 

responds to the atomistic region as an extension of the continuum.  

During the coupled MD-FEM simulation, a spatial average within each kth IVC is 

performed to yield the center of mass displacement, MD
k,CMδ

r
, which is further averaged 

over a certain period of M MD time steps to yield the statistical displacement vector, MD
k,Iδ

r
 

     

( )( )∑ −==
=

M

j
k,CMjk,CMtk,CMk,I r)t(r

M 1
01 rrrr

δδ                                    (1) 

         

In the above expression, ( ) ( )∑=
=

kN

i
ji

k
jCM tr

N
tr

1

1 rr  is the center of mass of the kth IVC 

containing Nk atoms at positions ir
r  at time tj of the jth MD step. The mass center 

displacement, k,CMδ
r

, in Equation (1) is calculated relative to the initial zero-displacement                              

position of the kth IVC, 
  
r 
r CM ,k 0( ). The determination of this initial position is discussed in 

Appendix A. In turn, the IVCs distribute reaction forces from the interface finite element 

nodes as external forces applied to the corresponding atoms within the IVC.   
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2.3 Surface MD Region  

 

In order for the MD domain to deform freely in response to applied reaction forces, it 

is modeled using free surface boundary conditions as discussed in [13,14]. However, the 

existence of a free surface introduces several undesirable effects in the MD system. First, 

it creates surface tension forces that must be removed to avoid distorting the MD 

response. Second, because atoms at or near the free surface do not have a complete set of 

interacting neighboring atoms, the coordination number of the surface atoms is reduced 

so they are less strongly bonded to the surrounding atomic field than those within the 

interior.  Under sufficiently large reaction forces, these atoms may be separated from the 

surface layer causing a surface degradation within the MD domain. To mitigate these free 

surface effects and to stabilize the atoms in the Interface MD Region, an additional 

volume of outlying atoms constituting a Surface MD Region is introduced as shown in 

Figure 2.  

While the Surface MD Region eliminates the free surface effects within the Inner MD 

Region, it also introduces an undesirable fictitious stiffness that elastically constrains the 

deformation of the Inner MD Region. The separate effects of surface tension and the 

fictitious stiffness cannot be computed independently. However, their combined effect 

may be defined as a resultant force, sf
r

, which acts at the boundary between the Surface 

MD Region and the Interface MD Region, and is given by the sum of two components 

expressed as 

 

               τξ rrr
+=sf .                 (2) 

 

In Equation (2), ξ
r

 is the elastic reaction of the Surface MD Region under deformation, 

and τr  is the force that results from the surface tension. Both forces are shown in Figure 

3.  

A way to mitigate both the surface tension and the elastic response of the Surface MD 

Region is to estimate and compensate for the force sf
r

. In the ideal case, when sf
r

is fully 

compensated, the Surface MD Region acts as if it possesses zero stiffness and 
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experiences no surface tension, thereby mitigating spurious influences on the Inner MD 

Region. Subdividing the Surface MD Region into a number of SVCs helps to follow the 

variations of sf
r

 along the perimeter of the Interface MD Region. For convenience, the 

partitioning of SVCs can be made to follow the IVC partitioning of the Interface MD 

Region. The resultant force is then calculated individually for each SVC. To compensate 

for sf
r

, a counterforce, cf
r

, is computed along the IVC/SVC interface and then distributed 

over the atoms of each SVC in a similar manner as the nodal reaction forces are applied 

to the IVCs of the Interface MD Region. The calculation of the counterforce, cf
r

, is 

presented in Appendix B. 

 

2.4 Phonon Damping 

 

Both the IVCs and SVCs serve the additional role of providing a dissipative damping 

mechanism for phonons propagating into the interface. Potential sources of phonon 

generation are the application of the FEM reaction forces to the IVCs and the resonant 

elastic oscillations in the dynamic MD region. Phonons can also be generated from within 

the Inner MD Region as a result of simulated atomistic processes. In the current 

application of ESCM, these oscillations must be damped in order to achieve equilibrium 

with the static FEM domain. A number of different damping schemes have been 

addressed in the literature. Holian and Ravelo [18], and more recently, Schäfer et al. [19], 

found that applying linearly increasing viscous damping to the atoms in a region 

surrounding the center of the MD system can effectively absorb the intense phonon 

waves coming from a propagating crack. In this scheme, a friction force, ηr , is given by  

 

            vr
r

χη −=                                                                      (3) 

 

and is applied to the atoms of the damped region in proportion to the atom’s velocity, v
r , 

and an appropriately chosen viscous coefficient χ [19,20]. The method is efficient and 

simple to implement. Its drawback is that it erroneously decreases the local temperature 
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in the damping region resulting in undesirable strain gradients because of thermal 

contraction.  

 To avoid disturbing the thermal field, the damping used in the present method is based 

on a modified form of Equation (3), where, instead of being proportional to each 

individual atom’s velocity, η
r  is set proportional to the group velocity of the mass center 

of a certain volume of N atoms. The frictional force, η
r , and the group velocity of the 

mass center, cmvv , are given by 

∑
=

=−=
N

i
icmcm N

;
1

v1vv rrrr
χη .             (4) 

By controlling the size of this damping region, one can damp phonons of wavelengths 

larger than the volume size while leaving the shorter wavelengths associated with random 

thermal fluctuations unaffected because their contribution to the group velocity averages 

to zero. Phonons introduced by the FE mesh cannot have wavelengths smaller than the 

distance between the interface FE nodes. Thus, it is convenient to choose both the 

Interface and Surface MD Regions as the volumes in which damping is applied.  

To ensure a gradual stepwise increase of the viscous coefficient, χ, from zero to χmax , 

the Interface and the Surface MD Regions are additionally subdivided into K layers of 

atoms parallel to the interface line. The layer thickness is equal to the maximum 

interaction distance of the applied interatomic potential (0.65 nm). In each layer, χ 

increases by a fixed amount Δχ starting from Δχ for the innermost layer, which neighbors 

the Inner MD region, to KΔχ =χmax for the outermost layer, at the edge of the MD 

domain. The damping volumes used for calculating the group velocity in Equation (4) are 

the cross-sections of the layers with the IVCs and SVCs.  

A discussion of criteria for the selection of the value of the viscous coefficient, χ, can 

be found in [19].  In those instances where viscous wave damping is not adequate (e.g., 

collisional dynamics), the more precise non-reflective boundary condition techniques 

discussed in [20-22] may be implemented. 
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2.5 MD-FEM coupling 

 

The MD-FEM coupling in the ESCM is achieved through an iterative equilibration 

scheme between the MD region and the FEM domain. In this scheme, iterations begin 

with displacements at the MD/FE Interface that are calculated as statistical averages over 

the atomic positions within each IVC and averaged over the time of the MD analysis. 

These average displacements are then imposed as displacement boundary conditions, 

{ Iδ
v

}, on the FEM domain. The resulting FEM BVP is then solved to recover new 

interface reaction forces, { IR
v

}, resulting from the applied interface displacements and 

any imposed far-field loading. The new interface reaction forces, { IR
v

}, are then 

distributed to the atoms in the IVCs, thus defining new constant traction boundary 

conditions on the MD system. Between the FEM solution updates, the traction boundary 

conditions are constant and applied to the MD region to ensure that the elastic field from 

the FEM domain is correctly duplicated in the atomistic region. The MD-FEM iteration 

cycle repeats until a stable equilibrium of both displacements and forces between the 

atomistic and continuum material fields is established at the interface.    

  The stiffness of the material in the FEM domain is described through a partitioning of 

the global stiffness matrix into a set of stiffness submatrices, [Kαβ], with α,β = V, F, I 

indicating: V as variables within the interior of the FEM domain; F as far-field variables, 

and I as interface variables.  Using these definitions, the static continuum equations of 

state at the nth FEM update at time tn are given by 
 
 

                        
[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]

( ){ }
( ){ }
( ){ }

( ){ }
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FIFFFV

VIVFVV
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t
t
t

KKK
KKK
KKK

δ
δ
δ

                 (5) 

 

To ensure that the FEM domain has the same elastic properties as the MD system, the 

stiffness terms in the [Kαβ] submatrices are calculated from the anisotropic elastic 

constants derived from the MD interatomic potential [23] at the same temperature as the 

MD simulation.  The FE model is subjected to two types of displacement boundary 
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conditions: (1) the far-field displacements {δF}, which define the load over the entire 

coupled MD-FEM system; and (2), the interface displacements { } ( )k
IIII ,.,.., δδδδ

vvv 21= , 

which represent the deformation response of the MD system at the 1st, 2nd, ... , and kth 

IVC.  

The solution for the unknown displacements in the interior of the FEM domain, { }Vδ , 

is given by 

 

                δV tn( ){ } = KVV[ ] −1 RV tn( ){ }− KVF[ ] δF tn( ){ }− KVI[ ] δ I tn( ){ }( )                     (6) 

 

which allows the calculation of the interface reaction forces, ( ){ } ,..),..,( 21 k
IIInI RRRtR

vvv
=  

of the 1st, 2nd, ... , and kth  IVC to be obtained from 

 

                       RI tn( ){ }= KIV[ ] δV tn( ){ }+ KIF[ ] δF tn( ){ }+ KII[ ] δ I tn( ){ }                        (7a) 

 

together with the far-field forces of constraint 

 

                       RF tn( ){ } = KFV[ ] δV tn( ){ }+ KFF[ ] δF tn( ){ }+ KFI[ ] δ I tn( ){ }                    (7b) 

 

The dynamics of an atom i of mass m(i) at position r(i) in the embedded MD regions is 

described by Newton’s equations of motion   

 

               ( )
( ) egionRMDSurfaceSVCi;Nffrm

RegionMDInterfaceIVCi;NRfrm
RegionMDInneri;frm

k
k
cm

k
S

k
ciii

k
k
cm

k
I

k
Iiii

iii

∈−+=
∈−+=
∈=

v
v
vvv

&&v

vvv
&&v

v
&&v

χ
χ (8)  

  

 The atoms in the Inner MD Region experience only the atomic force ( )∑=
j

ji
i ff ,

vv
 

resulting from their jth neighbors. The term ( )jif ,
v

is expressed by Equation (B4) as shown 

in Appendix B.  The atoms in the interface region, assigned to a given kth IVC, are 

subjected to the additional external force, k
IR

v
 (Equation (7a)), which is distributed over 
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the number of contained atoms, N I
k . The atoms in the Surface MD Region belonging to a 

given kth SVC experience the additional counterforce, k
cf

v
, which is distributed over the 

N S
k  atoms contained in their volume. In order to maintain the continuity of forces 

between adjacent cells, the force distribution is interpolated with a linear (or higher order) 

interpolation between atomic positions as a function of each atom’s distance from the 

mass center of its associated cell. In the present study, a simple linear interpolation was 

applied. For the equations governing the Interface and the Surface MD Regions in 

Equation (8), the viscous friction force, k
cmvvχ , defined in Equation (4), is applied 

uniformly to the atoms contained within the IVCs and SVCs.  

During the MD integration of Equation (8) for a period ΔtM = MΔt, where M is the 

number of time steps and Δt is the duration of the time step, the new average 

displacements ( ){ }1+nI tδ  are computed from Equation (1). The new atomistic 

displacements for the next FEM update at time tn+1 = tn + ΔtM  are reapplied in Equations 

(6) and (7a) to calculate the next iterative update of the recovered forces, RI tn+1( ){ }. 

During the same time interval, the compensation forces ( ){ }tfc  are also evolving through 

Equation (B15) (in Appendix B). The period ΔtM is selected by a determination of the 

convergence rate to a state of dynamic equilibrium between the MD region and the FE 

domain. Applying a suitable damping force (Equation 4) at the MD side of the interface 

ensures a faster convergence rate. The algorithm for the entire coupled simulation is 

summarized in Figure 4. 

Indication for convergence between the MD and FEM domains is the convergence of 

the interface forces {RI} and displacements {δ I} to equilibrium steady-state values. This 

convergence can be achieved only if the MD system can reach a dynamic force balance 

with the surrounding FEM system. A convergence criteria will be derived based on the 

force balance between the atomic forces in the MD system and the reaction forces in the 

FEM domain. At equilibrium, the averaged in time motion of the IVC mass centers is 

zero, or  

                                           0==
t

k
CMt

vr k
CM

v&v ,                                                    (9a) 
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and the change of the averaged total momentum, Δpk t , of any kth IVC due to the FEM 

reaction force for the period of the MD simulation of M time steps is also zero, or 

            ( ) 0ttrmp
M

1n

N

1i
niik

k
I

=∑ ∑ Δ=Δ
= =

&&vv .                                           (9b) 

Performing the same double summation on the second equation in Equation (8) 

results in 

         ( ) k
I

t

N

i
i

M

m

N

i
mi Rftf

M

k
I

k
I vvv

−== ∑∑∑
== = 11 1

1                                        (10) 

which states that, at equilibrium and in accordance with Newton’s 3rd law, the FEM 

reaction force becomes equal and opposite to the average MD atomic force in the 

corresponding kth IVC. Equation (10) thus expresses the establishment of static force 

equilibrium between the MD system and the FEM domain and can be used as a 

convergence criteria for the iterative MD-FEM coupling procedure.  

A discussion of practical issues regarding model generation for applying the ESCM 

procedure is presented in Appendix A.   

 

 

3. NUMERICAL VERFICATION OF THE ESCM 

 

3.1 The simulation models 

 

 Four test cases are considered to investigate the behavior of ESCM. First, the 

effectiveness of the application of compensation forces for the mitigation of surface 

tension effects is examined. Second, the dynamic behavior of the MD system is explored 

by varying the rate and sequence of applied external loads. Third, the stress-strain 

continuity between the MD region and the FEM domain is assessed through comparison 

with an exact solution of an elastically deformed plate with a circular hole. Fourth, a 

simulation of the propagation of an edge crack through the FEM domain into the MD 

system is performed to determine the suitability of ESCM for solving problems related to 

crack growth.  
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 The model geometry used in all of the verification studies is shown in Figure 5.  This 

model consists of a circular Inner MD Region of diameter, dMD, that is embedded in a 

larger exterior square FEM domain of elastic material with a side dimension of dFE = 

20dMD. A general discussion of issues related to model construction in applying ESCM is 

presented in Appendix A, while the specifics of the MD and FE models will be discussed 

next. 

 

3.1.1 The MD model 

  

The material for the simulation models was chosen to be a perfect crystal of 

aluminum. The atomic properties of aluminum were represented by the embedded atom 

model (EAM) potential of Mishin et al. [24], which was fitted to give the correct zero-

temperature lattice constant, ao = 0.405 nm, elastic constants, cohesive energy, vacancy 

formation energy, etc. For accurate coupling, material properties of the FE model are 

obtained directly from the EAM interatomic potential.  

The first three test simulations, presented in Sections 3.2.1 to 3.2.3, use a common 

MD system which will be described here. The forth test is performed on a bicrystal MD 

model which will be described in Section 3.2.4. For the first three tests, the MD domain 

is constructed as a circular disk of monocrystalline aluminum with its main 

crystallographic axes [1 0 0],  [0 1 0], and [0 0 1] oriented along the x-, y- and z- 

directions, respectively. The MD system is simulated with periodic boundary conditions 

along the z-direction and with free surface boundary conditions along its perimeter. These 

boundary conditions allow the MD domain to deform in an unconstrained manner in the 

x-y plane under the external reaction forces from the FEM domain while maintaining 

constant zero pressure along the z-direction using the Parrinello-Rahman constant-

pressure simulation technique [25]. Constant temperature is maintained by applying the 

Nose-Hoover thermostat [26] in the Inner MD Region only. The thickness of the plate 

along the z-axis is equal to h = 5ao ≈ 2.0 nm (Figure 5). Though very thin, the MD system 

mechanically behaves as an infinitely thick plate due to the applied periodic boundary 

conditions along the z- direction. The test simulations were performed at near zero 

temperature (T = 10 K) to minimize the thermal noise, and at room temperature (T = 300 
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K) to demonstrate ESCM for more practically relevant situations in which thermal effects 

are important. For the models used in the present work, effective viscous wave damping 

in the Interface and the Surface MD Regions was achieved by setting χmax = 3 eVps/nm2.  

For this χ and a damping layer with a width of 0.65 nm, the effective average temperature 

in the damping volumes decreased by only 10% compared to the bulk temperature. 

Four different models were prepared with the diameter of the circular MD system 

varying from 22 nm to 164 nm.  Reference positions of the IVC mass centers, ( )0rCM
r , 

were determined using methods outlined in Appendix A. The width of the Surface MD 

Region, defined at the free surface of the MD system, was fixed at 2 nm. 

 

 

 

3.1.2 The FE model 

 

The elastic continuum region was modeled using 8-node hybrid-stress hexahedral 

finite elements that have a reduced sensitivity to mesh distortion compared to standard 

displacement-based elements, and allow explicit stiffness coefficients to be analytically 

derived, thereby minimizing their computational requirements [27,28]. The elastic 

constants in the material constitutive matrix were derived from the interatomic potential 

for pure aluminum at T = 10 K. The values were averaged for uniaxial stresses from 100 

to 500 MPa, accounting for the non-linear material properties, as: C11 = 112.7 GPa, C12 = 

59.4 Gpa, and C44 = 30.6 GPa. These values differ by only 3% from the static, zero 

Kelvin elastic constants reported for this potential in [24]. 

The continuum finite element model contains an open inner region of diameter dMD, 

within which the atomistic domain is embedded. Along its perimeter, 80 nodes at z = 

+h/2 and 80 nodes at z = -h/2 were placed to form 160 FE interface nodes to 

communicate with the embedded MD system. 

The dimensions of the FE mesh, dFE , dMD and h as shown in Figure 5 were initially 

defined through the proportions of dFE : dMD : h = 20 : 1 : 1. Then, a direct scaling of the 

FE nodal coordinates was performed such that the dimensions dMD and h matched the 
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dimensions of the MD system. Finally, a second scaling of the FEM system was 

performed to preserve the outer dimension ratio dFE : dMD = 20 : 1.  

 

 

3.2 Numerical test results and analyses 

 

The four test cases selected to interrogate the essential features of the ESCM are 

presented in the following sections. Discussions assessing results and details of the 

analyses are included to thoroughly investigate the verification simulations. 

 

3.2.1 Verification of the surface tension and the Surface MD Region stiffness 

compensation 

 

The purpose of this simulation is to estimate the magnitude of the surface forces, their 

effect on coupling the two computational domains, and the ability of the compensation 

procedure to mitigate both surface tension effects and the spurious constraint of the 

Surface MD Region stiffness. The simulation is performed for the case of a homogeneous 

perfect crystal of aluminum. Because the effect of the surface tension is expected to be 

relatively weak, the temperature of the simulations was kept at T = 10 K to minimize the 

thermal noise and to increase the sensitivity of the force and pressure calculations. 

The pressure inside the system due to surface tension is defined as the radial 

component of the stress tensor, ps = σrr , averaged over an isolated MD system with free 

surface boundary conditions in the x- and y-directions, and periodic, zero pressure 

boundary conditions applied in the z-direction. The virial definition of stress [29] inside 

the MD system was used. The surface pressure increases from 10 to 80 MPa with dMD 

decreasing from 164 to 22 nm as presented in Figure 6. The expected dependence of ps on 

surface tension, γ, ( ps = 2γ / dMD)  for a cylindrical nanoparticle [30] is well reproduced. 

The surface tension, estimated from the slope of a linear fit to the results in Figure 6 as γ 

= 0.9 J/m2, is found to be in the range of the calculated surface energies for the 

interatomic potential used (γs = 0.87, 0.943, and 1.006 J/m2 for (111), (100) and (110) 

surfaces, respectively [24]). While the values for ps (< 0.1 GPa) are relatively small for a 
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MD simulation (where typical loads are of the order of 1 GPa), particularly for small MD 

systems, its contribution should not be neglected.  

The effect of applying a counterforce to compensate for the surface tension is shown 

in Figure 7 for the case of dMD = 44 nm.  When no surface compensation force is applied, 

the internal pressure, ps, gradually increases from zero due to the evolving effect of 

surface tension forces and approaches the value of ps = 41.5 MPa. In contrast, repeating 

the same simulation with the compensation force applied quickly reduces ps to near zero. 

The short initial increase in the value of ps observed during the first 10 ps is a result of 

the iteration procedure (Equation (B15)) for adjusting the counterforce, fc, having not yet 

reached convergence and the compensation being not yet complete. The compensation 

becomes complete approximately 20 ps after the beginning of the simulation. 

Under deformation, the stiffness of the Surface MD Region creates an elastic reaction 

force that adds to the surface tension. As explained in Section 2.3, the iteration procedure 

for fc was developed to compensate for both effects. Figure 8 shows the combined effect 

of surface tension and the elastic stiffness of the Surface MD Region on the equilibrium 

stress state of the Inner MD Region for four different MD system sizes ranging from dMD 

= 22 to 164 nm at 0.5% far-field strain. As the dynamic response of the MD system 

strongly depends on its size, to make the simulations comparable, the time t is rescaled by 

an estimated relaxation time, to, for each system size. The relaxation time is defined in the 

standard way as the period required for an exponential variable to decrease by 1/e (0.386) 

of its initial value. In Figure 8, the exponential variable is the deviation of the current 

stress, σxx(t), at time, t, from its equilibrium value, σ∞, established at t/to = 5 with no 

counterforce,   
r 
f c t( ) 

σ∞ − σ xx t( )= e− t /to  .               (11) 

 

The relaxation time, to, increases with increasing size and mass of the MD domain. 

For dMD = 22, 44, 84 and 164 nm (containing 47 600, 190 300, 693 400, and 2 641 000 

atoms, respectively), a curve fit to Equation (11) gave to = 5.1, 19.5, 61, and 200 ps, 

respectively.  

Initially (t/to < 5), no counterforce was applied in the Surface MD Region and σxx 

equilibrated to a lower level compared to the far-field stress, σo, of a homogeneously 
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strained plate. The stress due to the Poisson contraction of the unconstrained boundaries 

( y = ± dFE 2), σyy, also deviated from the expected zero level. The reason for these 

deviations is the combined effect of surface tension and the elastic stiffness of the Surface 

MD Region. The deviations of both σxx and σyy decrease proportionally to the increase of 

dMD, as expected because of the decreasing surface-to-volume ratio. When the 

counterforce is applied (t/to > 5), the effect of the spurious forces in the Surface MD 

Region for all of the tested MD systems of dMD from 22 to 164 nm is almost entirely 

negated.  

 

3.2.2 Simulation of the dynamics of the coupled MD-FEM system  

 

The dynamic behavior of the coupled MD-FEM system in the simplest case of a 

uniformly loaded homogeneous aluminum plate is depicted in Figure 9. The figure 

presents the stress response of the Inner MD Region to the applied far-field strain. The 

system is the same as that used for the results in Figure 7, with dMD = 44 nm. In this 

numerical test, the prescribed strain of εxx = 0.5% was reached in two ways: first, by an 

instantaneously applied far-field strain of 0.5% at the outer-boundaries of the FEM 

domain, and second, by five consecutive increments of 0.1% each. In both cases, the 

length of the MD iteration simulation was ΔtM = MΔt = 1 ps with M = 500 and Δt = 2 fs.  

The tensile component of the stress in the MD system, σxx, converges to nearly the 

same value for both cases shown in Figure 9 and is very close to the far-field stress of the 

FEM domain, σo (σxx → 354 MPa and σo = 358.5 MPa). Similarly, σyy quickly relaxes to 

zero after a temporary jump in response corresponding to each increase in the applied far-

field strain.  The test shows that the state of equilibrium, wherein the MD system is in 

force balance with the FEM domain, is obtained with little dependence on step size for 

monotonic loading up to 0.5% strain.  

After each strain increment of 0.1%, the MD system reached equilibrium with the 

FEM domain within approximately 25 ps, which is consistent with the estimate for to = 

19.5 ps in Figure 7 for dMD = 44 nm. This time was approximately the same as for the 

instantaneous jump to 0.5%. The relatively large response time observed in Figures 8 and 

9 indicates that using a static FE model (Equation (5)) for the continuum part of the 
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system is not suitable for simulating processes in the MD system that are evolving faster 

than to.  

 

3.2.3 Test for stress-strain continuity over the MD and the FEM regions: elastically 

deformed plate with a circular hole 

 

To assess the capability of the ESCM for generating compatible stress-strain fields in 

the elastic continuum domain and the MD atomistic region, the classic example of a plate 

with a circular hole subjected to uniaxial loading was used. In addition to having an exact 

elasticity solution for the slightly anisotropic material properties used [31,32], this model 

is particularly convenient for two reasons. First, it provides large stress variations (from 

zero to 2.82σo) around the hole, which can be used to test the continuity of the stress field 

at the MD/FE interface in the case of large stress gradients. Secondly, keeping the peak 

stress, 2.82σo, well below the theoretical elastic limit of the material (recently estimated 

for the applied interatomic potential to be between 3 and 5 GPa  [33]) prevents the 

occurrence of any plastic mechanisms in the MD region, which is not addressed in the 

present study, and a static elastic equilibrium can be achieved everywhere in the system.  

For comparison, an equivalent fully continuum three-dimensional anisotropic FE 

model was also simulated with a hole of radius 20 nm. This model was generated within 

a square FE mesh of dimension 1.6 μm by 1.6 μm and having the same elastic properties 

(derived from the interatomic potential) as the FE part of the coupled MD-FE model.  

In both models, the square plate was deformed at 0.5% uniaxial strain along the x-

direction through displacement-controlled boundary conditions imposed on the outer 

sides of the FEM system 800 nm away from the hole in the MD domain. At this strain, 

the far-field stress, estimated in Figure 9, is σo = 358.5 MPa. 

Starting from an undeformed MD region, the coupled MD-FEM iterative simulation 

was performed until equilibrium was established between the MD domain and the FEM 

domain whereby { }Iδ  and { }IR  converged to constant values. The stress field for σxx, σyy, 

and σxy stress components of the coupled MD-FEM system was calculated and compared 

with the fully continuum FEM solution that was obtained using the ABAQUS software 

package [34]. This comparison is shown in Figure 10. 
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The stress profiles for σxx and σyy taken along sections coincident with the x- and y-

axes passing through the center of the hole as shown in Figure 10(a) are presented in 

Figures 11(a) and 11(b), respectively. The continuity of the stress profiles is well 

preserved at the MD/FE interface apart from fluctuations that result from chaotic atomic 

thermal vibrations. Additionally, the stress profiles of the coupled model closely follow 

the stress profiles of the fully continuum FEM analysis of the equivalent model. The 

largest discrepancy is seen for the tangential component of the stress (σyy along the x-

profile in Figure 11(a) and σxx along the y-profile in Figure 11(b)) in the MD system, 

which deviates substantially from the continuum prediction when approaching the surface 

of the hole. As shown in Figure 11(b), the continuum solution closely approaches the 

theoretical value of 2.82σo that is calculated for the slightly anisotropic material used. 

One reason for this discrepancy may be the definition of virial stress, which gives poor 

convergence and erroneous estimates near free surfaces [35]. But more likely it is that the 

continuum model does not correctly account for the nature of the surface tension, which 

results from the occurrence of missing bonds between the atoms at the free surface. From 

the previous analysis (Figure 3), it was found that the normal pressure of a free surface 

with a curvature radius of 40 nm is ps = 45 MPa. This value agrees well with the normal 

component of the stress estimated from the MD simulation (σxx along the x-profile in 

Figure 11(a), and σyy along the y-profile in Figure 11(b)) at the edge of the hole, where 

the corresponding FEM solution approaches zero.  
 

 

3.3 Example of an edge crack simulation along a grain boundary in aluminum  

 

An important application of the ESCM technique described in this paper is the 

simulation of atomistic processes related to damage. A typical example is the tip of an 

edge crack, where the idealized elastic stress field decreases as r1  and extends to a 

distance r from the tip. The crack tip stress field is much larger than a MD system can 

computationally simulate. A coupled MD-FE model for this example is presented in 

Figure 12, where the MD system is used to atomistically simulate the plastic zone at the 

crack tip, and the FEM domain is used to provide the continuum elastic boundary 
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conditions of a far-field tensile strain of εyy = 2% applied along the y-direction. To 

investigate the applicability of ESCM at higher temperatures, the simulation was carried 

out at room temperature (T = 300 K). 

The dimensions of the system are: h = 2.9 nm, dMD = 45 nm, and dFE = 900 nm. The 

MD system represents a bi-crystal with a high-angle grain boundary formed between the 

two crystals along which the edge crack propagates. In the selected coordinate system of 

the model, the orientation of one of the crystals is: (x:[
−−

1077 ]; y:[ 755
−

]; z: 

[ 011 ]), and the orientation of the other crystal is: (x:[
−−

1077 ]; y:[
−−

755 ]; z: 

[ 011 ]).  In this way, both crystals are mirror images of each other relative to the 

crystallographic plane {5 5 7}, which becomes the plane of the grain boundary (GB) 

between them. The GB thus formed is a <1 1 0> ∑99 symmetric tilt GB. Crack 

propagation along this GB has been extensively studied by MD simulations [36-38] at a 

cryogenic temperature of T = 100 K.   

In the stresses discussed in [36-38], it was found that, while in one direction the crack 

becomes blunted by deformation twinning, in the opposite direction it propagates in a 

brittle-like manner with very little dislocation emission. The latter direction has been 

chosen as the propagation direction for the edge crack of the simulation in Figure 12. The 

simulation using the ESCM approach performed at room temperature showed higher 

dislocation plasticity than at T = 100 K [36-38]. The remaining problem is how to 

transfer this plasticity to the FEM continuum. Some work related to this issue has been 

started independently by Curtin et al. [3], Shilkrot et al. [8], and Qu et al. [9], where the 

CADD coupling methodology has been developed to follow and transmit dislocations 

between the atomistic and continuum regions. However, that methodology is not 

employed here.  

What is essential in the example shown in Figure 12 is that the ESCM approach 

preserves the continuity of the stress – strain field at the MD-FEM interface even for a 

dynamic problem such as crack propagation simulated at room temperature. The depicted 

profile shows the continuity of stresses across the boundary when the crack speed is slow 

compared to the elastic response time of the system. In the example shown in Figure 12, 
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the crack propagation speed was approximately 100 m/s or on the order of 1/30 the speed 

of sound.   

 

 

 

4. SUMMARY 

 

A new statistical approach to couple MD with FEM simulations, denoted the 

embedded statistical coupling method (ESCM), has been developed. The approach is 

based on solving the boundary value problem through an iterative procedure for both MD 

and FEM systems at their common interface. The two systems are simulated 

independently, and they communicate only through their boundary conditions. The FEM 

system is loaded by far-field loads applied to the external boundaries and along the 

MD/FE interface by nodal displacement boundary conditions that are obtained as 

statistical averages of the atomic positions in the MD system at the mass centers of 

representative interface volume cells (IVCs) associated with each FE node along the 

interface. The MD system, in turn, is simulated under periodically updated constant 

traction boundary conditions that are obtained from the FEM system as reaction forces to 

the MD displacements at the interface. This iterative approach allows the continuity at the 

MD/FE interface to be achieved at different length and time scales inherent to both 

systems without the need of redefining continuum quantities at the discrete atomic scale 

and atomic quantities at the continuum scale. 

  Compared to the widely used direct coupling methods, ESCM does not discretize the 

MD/FE interface to atomistic scales but uses a statistical mapping of atomistic behavior 

to a continuum FEM representation. ESCM presents a simple and flexible technique in 

providing elastic boundary conditions for a MD model and eliminates some of the finite-

size artifacts inherent to a purely atomistic simulation. Because of the statistical 

connection between the MD and the FEM systems, there is no limitation on the 

temperature of the atomistic system as long as the thermal corrections to the elastic 

properties of the continuum system are considered. 
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Using static FEM calculations for the continuum part of the system, the ESCM shows 

excellent convergence for systems simulated under static elastic equilibrium and 

preserves stress continuity at the MD/FE interface for systems exhibiting relatively slow 

dynamics governed by the MD simulation of the atomistic part of the system. Additional 

study needs to be performed to determine if the implementation of a dynamic FEM 

simulation can improve the dynamics of the system away from equilibrium. 

      In general, the method is relatively easy to implement. Any conventional FEM code, 

including commercial packages, can be used to solve the FEM part of the model. Only 

small modifications to an otherwise conventional MD code are necessary to apply the 

constant tractions to the MD system.  

The verification simulations performed in this study demonstrated the effectiveness of 

the ESCM to couple atomistic and continuum modeling into a unified multiscale 

simulation. Several idealized test cases were analyzed to interrogate the behavior of the 

ESCM. First, the effectiveness of using the Surface MD Region to provide means to 

emulate infinite boundary conditions for the MD system was verified. Second, the 

dynamic behavior of the coupled MD-FEM system was explored demonstrating 

convergence to the same equilibrium state while varying the rate and sequence of applied 

loads. Third, the stress-strain continuity between the MD region and the FEM domain 

was validated using the model of an elastically deformed plate with a circular hole. 

Finally, simulating the slow propagation of an edge crack was performed to demonstrate 

the overall representational capability of the coupled MD-FE model in a system evolving 

quasi-statically. 
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APPENDIX A 

ESCM Model Construction  

 

In the ESCM approach, the statistical basis for numerically coupling the different 

computational frameworks provides a much less restrictive set of interfacing 

requirements compared to DC methods and, thus, allows a greater independence in the 

construction of the associated MD and FE models. This aspect of ESCM, however, 

results in additional preparatory work in constructing the coupled model, primarily 

involving the preparation of the initial state of the MD region. A schematic of a MD 

model is depicted in Figure A1.  

The construction procedure starts with the definition of the shape and size of the MD 

region and FEM domain. The dimensions of the MD system are defined by the 

dimensions of the combined Inner, Interface, and Surface MD Regions. The dimensions 

of the FEM domain are selected such that the outer boundary defines the desired overall 

material domain and the inner boundary coincides with the IVC mass centers along the 

MD/FE interface. The FE mesh conveniently provides a regular distribution of node 

locations to be used in a Voronoi construction of the IVCs along the MD/FE interface. 

Appropriate interpolation methods (e.g. linear interpolation employing finite element 

shape functions) must be used to accurately map quantities (e.g. interface displacements) 

between the IVC mass centers and the corresponding FE nodes. 

It is additionally important in the construction of the ESCM model that the reference 

states of the MD and FEM systems coincide as closely as possible. For a static FEM 

domain, the displacements are zero when the applied forces are zero. For a MD region, 

displacements are statistical quantities that can include some statistical error in their 

estimate that needs to be minimized.  
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Preparatory simulations of the MD system involve thermalization, equilibration, and 

the determination of external compensating forces. The calculation of these compensating 

forces is discussed in Appendix B and are required to maintain the initial atomic 

reference states that are necessary for this domain to exhibit the response of an infinite 

system influenced only by external forces when coupled to the FEM computational 

domain. To perform the preparatory simulations, an initial MD model of rectangular 

shape is chosen that is large enough such that the geometry of the desired MD region 

(which in the present work is a circular disc) is contained as a subset. This subset can 

subsequently be extracted by removing the atoms outside the desired MD region 

boundaries (see Figure A1). 

To accurately define the zero-displacement reference state of the MD region, the 

system is thermally equilibrated at zero stress and simulated as a constant number of 

atoms, N, constant pressure, P, and constant temperature, T, (NPT ensemble) under 

periodic boundary conditions (PBC) in all three dimensions. PBCs are necessary during 

this step to avoid the presence of a free surface because the surface tension would 

produce a pressure, ps, on the surface, resulting in erroneous zero-displacement positions 

for the IVC mass centers.  

After achieving equilibrium, an additional MD simulation under PBCs at zero 

pressure and constant temperature is carried out to obtain the statistical time average of 

the mass centers. Larger IVCs and longer initialization times result in smaller statistical 

errors in the reference state because the statistical error of the estimated averages depends 

on the number of atoms, N, per IVC and the time, t, of the simulation as 1−tN . 

Therefore, the simulation should be carried out long enough such that any systematic 

error is reduced to a level having negligible influence on the coupled simulation.  

Two additional issues must be addressed in the model generation. First, the width of 

the Surface MD Region will generally not fully contain the domain of atoms having 

equilibrium states disrupted due to free surface effects. Therefore, an additional 

simulation will be required to obtain the forces, 
 

r 
f s r 

δ I ={0} , in the reference state as 

explained in Appendix B (Equation (B15)). Second, the elastic anisotropy of the FEM 

domain is a function of the crystallographic orientation of the atomistic microstructure 
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and should be derived from the interatomic potential used in the MD system under the 

equivalent thermal and mechanical loading conditions to avoid mismatch of elastic 

properties at the interface. 

The operations discussed in this appendix complete the model construction. This 

model, together with applied far field boundary conditions, is used to start the first MD – 

FEM iteration of the coupled simulation.  

A summary of the individual steps involved in developing the complete ESCM model 

is presented in Figure A2. 

 

 

APPENDIX B 

Calculation of Compensating Forces 
 

 
 As discussed in Section 2.3, there are two spurious forces created within the MD 

system in the ESCM approach that have to be eliminated. One is the surface tension 

force,   
r 
τ , created by the applied free surface boundary conditions at the perimeter of the 

MD system. The other is the elastic reaction force,  
r 
ξ , of the Surface MD Region created 

by its stiffness as the MD system deforms. The method to neutralize both of these forces 

is based on applying an external counterforce to the atoms within the Surface MD Region 

                                                       ( )τξ rrr
+−=cf .             (B1) 

The counterforce is specifically determined for each SVC and is uniformly distributed 

over the atoms of the SVC so that the total sum of forces in the SVC is zero 

                                                    0=++ τξ rrr
cf                (B2) 

Because ξ
r

 and τr  cannot be estimated directly during the simulation, the expression 

of the counterforce given in (Equation (B1)) cannot be used to directly determine  
v 
f c . 

What can be determined in the MD simulation, however, is the net spurious force, sf
v

, that 

is generated in the surface MD Region and imposed on the remainder of the MD system. 

As illustrated in Figure 3, the free surface force, sf
v

, for a given SVC is defined as the 

force between the SVC and the Interface MD Region. It is calculated individually for 
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each SVC as a sum over the pair forces between atoms (i) of the SVC and all of their 

interaction neighbors (j) lying outside the Surface MD Region  

                                         ( ) ( )
( )( )

∑ ∑=
∈ ∉SVCi layer.surfj

)j,i(
s tftf

rr
              (B3) 

The pair force between atoms (i) and (j) for a potential based on the embedded atom 

method (EAM) [39] can be expressed as 

                                  ( ) ( )
( ) ( ) ( ) ( )

)j,i(

)j,i(

)j,i(

j

)j,i(

i
j,i

r
r

r
t

r
ttf

rr
⎥
⎦

⎤
⎢
⎣

⎡
+−=

∂
∂φ

∂
∂φ                     (B4) 

where ( ) ( )tiφ  is the potential energy of atom (i) at time t, and  
r r (i, j ) =

r r (i ) −
r r ( j ) with 

)j,i()j,i( rr r
= .  

To ensure that the equilibrium condition for a perfect crystal lattice is satisfied at zero 

pressure and T =  0 K, the following condition must be met 

                                         ( ) { }00 00 === T,Psf
r

                 (B5) 

A requirement on the division of the Surface MD Region is that each SVC must 

occupy a whole number of lattice unit cells. The reason for this requirement is because 

any resultant force at the atomic scale is a sum of attractive and repulsive forces between 

interacting atoms. The equilibrium condition is satisfied only for the special case of a 

complete, periodic, lattice unit cell. Conversely, equilibrium is not satisfied for individual 

atoms or for arbitrarily defined groups of atoms. 

During simulation with evolving deformations and with the presence of a free 

surface,   
r 
f s is equal to (after averaging the thermal fluctuations, inherent in each 

atomistically calculated force) the sum of ξ
r

and that part of τr , indicated as sτr , which is 

contained in the Surface MD Region only  

                                                 ssf τξ rrr
+=                  (B6) 

In the above equation, an assumption is made that a very thin Surface MD Region 

of a few nanometers thickness may not contain all the surface tension effects, so that 

the total surface tension force is decomposed into two components 

                                                   Is τττ rrr
+=                 (B7) 
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where sτr  is the component that is contained in the Surface MD Region, and Iτr  is the 

component that is contained in the remaining inner part of the MD system. Only sτr  

would give contribution to   
r 
f s  in Equation (B6). 

When the counterforce,   
r 
f c , is applied,  

r 
f s  now equals 

                                                   css ff
rrrr

++= τξ              (B8) 

Using the definition for cf
v

expressed by Equation (B1) for full compensation yields  

                                           ( ) Issf ττξτξ rrrrrr
−=+−+=             (B9) 

Equation (B9) gives the criteria for full compensation of the spurious forces as 

Isf τr
r

−= . The counterforce, cf
v

, can now be defined as the force, which is needed to 

maintain ( ) Is tf τr
r

−= . This definition has the desirable feature of not requiring that ξ
r

 and 

  
r 
τ  be determined explicitly.  An iterative procedure is used to maintain ( ) Is tf τr

r
−=  by 

correcting   
r 
f c t( ) within each SVC by the negative of the difference between   

r 
f s t( ) and 

Iτr−  at any given time t, as  

                                
  

r 
f c t + Δt( )=

r 
f c t( )−

Δt
tM

r 
f s t( )+

r 
τ I[ ];

r 
f c 0( )= 0{ }      (B10) 

Here, Δt is the MD time step, and tM >> Δt is an adjustable inertial time parameter 

that controls the sensitivity of the counterforce to fast atomic fluctuations of the surface 

force (a suitable choice was found to be tM = 1000Δt).  

In order to perform the iteration in Equation (B10), the surface force component, Iτr , 

has to be determined. If the Surface MD Region is thick enough, Iτr  is a small fraction of 

τr , and a good simplifying assumption is to set 0=Iτr , which reduces Equation (B10) to 

  

r 
f c t + Δt( )=

r 
f c t( )−

Δt
tM

r 
f s t( );

r 
f c 0( )= 0{ }        (B11) 

 Otherwise, when Iτr  is considered non-negligible, the following method can be used 

for its estimation and is based on two considerations. First, when the MD system is not 

deformed, the elastic reaction force of the surface region is zero, or 0=ξ
r

. Second, the 

assumption is made that the deformation does not change the surface tension, which is 
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appropriate if changes in the surface curvature and the surface energy due to deformation 

are negligible.  

A non-deformed state is defined when the estimated displacements, Iδ
r

, are zero. 

Here, it is recalled that Iδ
r

 was defined in Equation (1) relative to  
r 
r CM 0( ) for a defect free 

system equilibrated under fully 3D periodic boundary conditions with no free surface. To 

make   
r 
δ I = 0, an external radial force per unit area given by 

r
f r

γτ −=−=
rv

                  (B12) 

is uniformly applied to the atoms of the surface region having a free surface with surface 

tension, γ, and radius of curvature, r. Equation (B12) is the Young-Laplace’s equation for 

the internal pressure of a cylindrical particle of radius r due to its surface tension. Even 

though the Young-Laplace’s equation is strictly applicable to liquids, it has been shown 

that it also provides a reasonable approximation for very small metallic domains [30].  

Under the conditions that 0=Iδ
v

 and 0=ξ
v

, only sτr  and  
r 
f r  would contribute to  

v 
f s  , 

which can be presented as  

Isrss ff ττττ rrrrrr
−=−=+=                  (B13) 

Expressed in another way, recalling Equation (B3), Iτr  is defined as: 

  

v τ I = −
r 
f s r 

δ I ={0} = −
r 
f (i, j )

j∉ surf .layer( )
∑

i∈ SVC( )
∑ r 

δ I ={0}            (B14) 

Equation (B14) allows Iτr  to be calculated through the atomistic forces in an equilibrated 

MD system when 0=Iδ
v

. To avoid uncertainties from random thermal fluctuations in the 

atomistic calculation of 
  

r 
f s r 

δ I ={0} , a suitable time averaging at equilibrium can be used in 

Equation (B14). 

After substituting Equation (B14) in Equation (B10), the iteration procedure for 

calculating the counterforce becomes  

  

r 
f c t + Δt( )=

r 
f c t( )−

Δt
tM

r 
f s t( )−

r 
f s r 

δ I ={0}[ ]; r 
f c 0( )= 0{ }      (B15) 

The iteration in Equation (B15) is performed separately for each SVC to obtain and 

update   
r 
f c t( ) at every MD time step to counteract both ξ

r
 and τr  at the same time during 
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the coupled simulation by maintaining
 

r 
f s t( )≈

r 
f s r 

δ I ={0} . Introducing the initial force state 

  

r 
f s r 

δ I ={0}  as a reference state in Equation (B15) allows the use of a very thin Surface MD 

Region (1 to 2 nm has been used in the present study), so that its stiffness could be small 

and the compensating force,   

r 
f c t( ), would be a small perturbation to the interatomic 

forces. For a thicker Surface MD Region, 0→Iτv , and the simplified iteration (Equation 

(B11)) can be used instead.  
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FIGURES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Model topology used in the ESCM approach depicting the continuum region 
represented by the finite element method (FEM), the atomistic domain simulated by 
molecular dynamics (MD), and the MD/FE Interface region coupling the two 
computational approaches.  
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Figure 2. Structure of the MD/FE Interface in the ESCM approach. 
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Figure 3. Forces within the Interface and Surface MD Regions. RI are FEM reaction 
forces, fs are the resultant surface region forces, and fc are applied compensating forces. 
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Figure 4.  Flowchart summarizing the coupled analysis procedure. 

Define coupled MD-FEM Model 
            Set initial far-field boundary conditions: {δF t0( )}  

            Set initial interface displacements:         {δ I t0( )}  

Solve FEM system and obtain interface reaction forces 

( ){ } [ ] ( ){ } [ ] ( ){ } [ ] ( ){ }nIIInFIFnVIVnI tKtKtKtR δδδ ++=      (7a) 

Perform MD simulation using M time steps 
tm = tn + mΔt; m = 1.. M  

Compute compensating forces based on current deformation state 

  

r 
f s tm( )=

r 
f m

(i, j ) t( )
j∉ surf .layer( )

∑
i∈ SVC( )
∑                      (B3) 

  

r 
f c tm( )=

r 
f c tm −1( )−

1
M

r 
f s tm( )−

r 
f s r 

δ I ={0}[ ]         (B15) 

Integrate Newton's equation of motion   

    ( )
( ) egionRMDSurfaceSVCi;Nffrm

RegionMDInterfaceIVCi;NRfrm
RegionMDInneri;frm

k
k
cm

k
S

k
ciii

k
k
cm

k
I

k
Iiii

iii

∈−+=
∈−+=
∈=

v
v
vvv

&&v

vvv
&&v

v
&&v

χ
χ   (8) 

Calculate new interface displacements  

tn+1 = tn + MΔt  
r 
δ I tn+1( ) =

r 
δ CM t

=
1
M

r r CM (tm ) −
r r CM 0( )( )

m= 1

M

∑       (1) 

  m = m + 1
    m = M ?  <No>

<Yes>
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Figure 5. Model geometry  of the test MD-FEM  coupled system. 
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Figure 6. Dependence of the pressure ps caused by the surface tension of a circular MD 
domain of radius dMD simulated with free surface boundary conditions. The slope is 
proportional to the surface  tension γ. 
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Figure 7. Evolution of the internal pressure of a circular MD system of dMD = 44 nm with 
and without surface tension compensation. 
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Figure 8. Evolution of the longitudinal tensile σxx and transverse σyy stress components 
of the internal stress of the MD system of a coupled MD-FE  model simulated at 0.5% far 
field strain. Data for four circular MD systems of diameters from 22 to 164 nm is given 
before (t/to < 5) and after (t/to > 5) Surface MD Region compensation (shown separated 
by the gray band).   
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Figure 9. Dynamic response of the coupled MD-FEM system under far-field 
homogeneous tensile strain εxx applied either instantaneously (black) or in five 
consecutive increments (gray).   
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  80 nm 40 nm 

Figure 10 Simulation of an open hole specimen. Comparison of the stress field for σxx, σyy, 
and σxy stress components of the coupled MD-FEM  system (a, c, e) with a full three-
dimensional anisotropic continuum FEM solution (b, d, f). 
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Figure 11 Stress profiles in the open hole specimen for σxx and σyy along (a) the x-axis 
and (b) the y-axis scanned through the center of the hole (as given in Figure 11(a)). The 
symbols represent the ESCM simulation data, while the full lines represent fully 
continuum FEM results. For reference, the surface tension induced pressure ps is also 
shown.  
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Figure 12 ESCM simulation of an edge crack propagating along a <110>/Σ99 symmetric 
tilt grain boundary in Al at 2% far-field uniaxial strain showing shear stress σxy. 
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Figure A1. Generation of MD model by equilibrating  
within a larger rectangular MD model under PBCs.  



To be submitted to International Journal for Numerical Methods in Engineering 

 48

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                     Figure A2.  Flowchart summarizing the MD-FE model construction. 

Define coupled MD-FEM model  
1) Select overall model dimensions. 
2) Select shape and size of the computational partitions: 
                     a) Define dimension of FEM domain 

b) Define dimension of MD domain

FEM rescaling  
Rescale the FEM mesh according to the 
equilibrated dimensions of the MD 
domain. 

MD equilibration  
Equilibrate the MD system at desired 
temperature and no load under PBC. 
 

Perform coupled MD-FEM simulation 

MD Domain Construction 
 

Construct MD system of the desired 
microstructure with periodic boundary 
conditions (PBC) containing the MD 
domain as a subset.  

FEM Domain Construction 
 

Construct FEM mesh that best acco-
mmodates  the shape and microstructure of 
the MD domain. Specify the far-field 
loading conditions.  

MD – FEM Interface Construction  
1) Superimpose the FEM mesh on the MD domain. 
2) Partition interface MD region. Discretize into interface volume cells (IVCs) and determine 

mass centers to associate with individual FEM nodes. 
3) Partition surface MD region. Discretize into surface volume cells (SVCs). 

Estimating the reference force state for the Surface MD Region    
(optional) 

1) Make a copy of the MD domain. 
2) Apply a radial force fr to the atoms of the Surface MD Region specific for each SVC.     (B12) 
3) Equilibrate the copy of the MD domain using fr as constant traction boundary conditions. 
4) During equilibration, adjust fr so that  

r 
δ I = 0. 

5) After equilibrium is reached, store 
r 
f s r 

δ I ={0}  for each SVC and delete the MD copy.       (B14) 

MD initialization 
 

1) MD simulation using PBC’s to estimate the initial zero displacement positions. 
2) Remove all atoms from the MD system exterior to desired MD domain. 


