48 research outputs found

    The Liouville-Arnold-Nekhoroshev theorem for non-compact invariant manifolds

    Full text link
    Under ceratin conditions, generalized action-angle coordinates can be introduced near non-compact invariant manifolds of completely and partially integrable Hamiltonian systems.Comment: 8 page

    Geometric quantization of time-dependent completely integrable Hamiltonian systems

    Get PDF
    We provide quantization of a time-dependent completely integrable Hamiltonian system such that its Hamiltonian and first integrals possess time-independent spectra

    Global action-angle coordinates for completely integrable systems with noncompact invariant submanifolds

    Full text link
    The obstruction to the existence of global action-angle coordinates of Abelian and noncommutative (non-Abelian) completely integrable systems with compact invariant submanifolds has been studied. We extend this analysis to the case of noncompact invariant submanifolds.Comment: 13 pages, to be published in J. Math. Phys. (2007

    Classical field theory on Lie algebroids: Variational aspects

    Full text link
    The variational formalism for classical field theories is extended to the setting of Lie algebroids. Given a Lagrangian function we study the problem of finding critical points of the action functional when we restrict the fields to be morphisms of Lie algebroids. In addition to the standard case, our formalism includes as particular examples the case of systems with symmetry (covariant Euler-Poincare and Lagrange Poincare cases), Sigma models or Chern-Simons theories.Comment: Talk deliverd at the 9th International Conference on Differential Geometry and its Applications, Prague, September 2004. References adde

    On the k-Symplectic, k-Cosymplectic and Multisymplectic Formalisms of Classical Field Theories

    Get PDF
    The objective of this work is twofold: First, we analyze the relation between the k-cosymplectic and the k-symplectic Hamiltonian and Lagrangian formalisms in classical field theories. In particular, we prove the equivalence between k-symplectic field theories and the so-called autonomous k-cosymplectic field theories, extending in this way the description of the symplectic formalism of autonomous systems as a particular case of the cosymplectic formalism in non-autonomous mechanics. Furthermore, we clarify some aspects of the geometric character of the solutions to the Hamilton-de Donder-Weyl and the Euler-Lagrange equations in these formalisms. Second, we study the equivalence between k-cosymplectic and a particular kind of multisymplectic Hamiltonian and Lagrangian field theories (those where the configuration bundle of the theory is trivial).Comment: 25 page

    Symmetries in Classical Field Theory

    Full text link
    The multisymplectic description of Classical Field Theories is revisited, including its relation with the presymplectic formalism on the space of Cauchy data. Both descriptions allow us to give a complete scheme of classification of infinitesimal symmetries, and to obtain the corresponding conservation laws.Comment: 70S05; 70H33; 55R10; 58A2

    Multivector Field Formulation of Hamiltonian Field Theories: Equations and Symmetries

    Full text link
    We state the intrinsic form of the Hamiltonian equations of first-order Classical Field theories in three equivalent geometrical ways: using multivector fields, jet fields and connections. Thus, these equations are given in a form similar to that in which the Hamiltonian equations of mechanics are usually given. Then, using multivector fields, we study several aspects of these equations, such as the existence and non-uniqueness of solutions, and the integrability problem. In particular, these problems are analyzed for the case of Hamiltonian systems defined in a submanifold of the multimomentum bundle. Furthermore, the existence of first integrals of these Hamiltonian equations is considered, and the relation between {\sl Cartan-Noether symmetries} and {\sl general symmetries} of the system is discussed. Noether's theorem is also stated in this context, both the ``classical'' version and its generalization to include higher-order Cartan-Noether symmetries. Finally, the equivalence between the Lagrangian and Hamiltonian formalisms is also discussed.Comment: Some minor mistakes are corrected. Bibliography is updated. To be published in J. Phys. A: Mathematical and Genera

    Abelian gerbes as a gauge theory of quantum mechanics on phase space

    Get PDF
    We construct a U(1) gerbe with a connection over a finite-dimensional, classical phase space P. The connection is given by a triple of forms A,B,H: a potential 1-form A, a Neveu-Schwarz potential 2-form B, and a field-strength 3-form H=dB. All three of them are defined exclusively in terms of elements already present in P, the only external input being Planck's constant h. U(1) gauge transformations acting on the triple A,B,H are also defined, parametrised either by a 0-form or by a 1-form. While H remains gauge invariant in all cases, quantumness vs. classicality appears as a choice of 0-form gauge for the 1-form A. The fact that [H]/2i\pi is an integral class in de Rham cohomology is related with the discretisation of symplectic area on P. This is an equivalent, coordinate-free reexpression of Heisenberg's uncertainty principle. A choice of 1-form gauge for the 2-form B relates our construction with generalised complex structures on classical phase space. Altogether this allows one to interpret the quantum mechanics corresponding to P as an Abelian gauge theory.Comment: 18 pages, 1 figure available from the authors upon reques

    Invariant Forms and Automorphisms of Locally Homogeneous Multisymplectic Manifolds

    Full text link
    It is shown that the geometry of locally homogeneous multisymplectic manifolds (that is, smooth manifolds equipped with a closed nondegenerate form of degree > 1, which is locally homogeneous of degree k with respect to a local Euler field) is characterized by their automorphisms. Thus, locally homogeneous multisymplectic manifolds extend the family of classical geometries possessing a similar property: symplectic, volume and contact. The proof of the first result relies on the characterization of invariant differential forms with respect to the graded Lie algebra of infinitesimal automorphisms, and on the study of the local properties of Hamiltonian vector fields on locally multisymplectic manifolds. In particular it is proved that the group of multisymplectic diffeomorphisms acts (strongly locally) transitively on the manifold. It is also shown that the graded Lie algebra of infinitesimal automorphisms of a locally homogeneous multisymplectic manifold characterizes their multisymplectic diffeomorphisms.Comment: 25 p.; LaTeX file. The paper has been partially rewritten. Some terminology has been changed. The proof of some theorems and lemmas have been revised. The title and the abstract are slightly modified. An appendix is added. The bibliography is update

    Conserved Quantities from the Equations of Motion (with applications to natural and gauge natural theories of gravitation)

    Full text link
    We present an alternative field theoretical approach to the definition of conserved quantities, based directly on the field equations content of a Lagrangian theory (in the standard framework of the Calculus of Variations in jet bundles). The contraction of the Euler-Lagrange equations with Lie derivatives of the dynamical fields allows one to derive a variational Lagrangian for any given set of Lagrangian equations. A two steps algorithmical procedure can be thence applied to the variational Lagrangian in order to produce a general expression for the variation of all quantities which are (covariantly) conserved along the given dynamics. As a concrete example we test this new formalism on Einstein's equations: well known and widely accepted formulae for the variation of the Hamiltonian and the variation of Energy for General Relativity are recovered. We also consider the Einstein-Cartan (Sciama-Kibble) theory in tetrad formalism and as a by-product we gain some new insight on the Kosmann lift in gauge natural theories, which arises when trying to restore naturality in a gauge natural variational Lagrangian.Comment: Latex file, 31 page
    corecore