349 research outputs found

    Separation of n-hexane - ethyl acetate mixture by azeotropic batch distillation with heterogeneous entrainers

    Get PDF
    In this article, a systematic study of the separation of the n-hexane - ethyl acetate mixture with an entrainer by heterogeneous azeotropic batch distillation is performed. Based upon the thermodynamic behaviour of the ternary mixtures, potential entrainers partially miscible with one or two original azeotropic components are chosen. In all cases, the entrainer adds a heterogeneous binary or ternary azeotrope that is the lowest boiling point in the ternary diagram. Therefore, it leaves the column by the overhead stream which is subcooled to get two liquid phases in the decanter. The phase with the highest amount of the original component is removed as distillate product whereas the entrainer – rich phase is continuously refluxed to the column. Considering methanol, acetonitrile, water and nitromethane as heterogeneous entrainers, screening was performed based on the composition of the unstable heteroazeotropic mixture, the ratio of both liquid phases in the condensed top vapour and the purity of the distillate product determined by the liquid – liquid envelope at the decanter temperature. The process feasibility analysis is validated by using rigorous simulation with the batch process simulator ProSimBatch. Simulation results are then corroborated in a bench experimental column for the selected entrainer, showing several advantages of heterogeneous batch distillation compared to homogeneous systems

    Nickel and gtp modulate helicobacter pylori ureg structural flexibility

    Get PDF
    UreG is a P-loop GTP hydrolase involved in the maturation of nickel-containing urease, an essential enzyme found in plants, fungi, bacteria, and archaea. This protein couples the hydrolysis of GTP to the delivery of Ni(II) into the active site of apo-urease, interacting with other urease chaperones in a multi-protein complex necessary for enzyme activation. Whereas the conformation of Helicobacter pylori (Hp) UreG was solved by crystallography when it is in complex with two other chaperones, in solution the protein was found in a disordered and flexible form, defining it as an intrinsically disordered enzyme and indicating that the well-folded structure found in the crystal state does not fully reflect the behavior of the protein in solution. Here, isothermal titration calorimetry and site-directed spin labeling coupled to electron paramagnetic spectroscopy were successfully combined to investigate HpUreG structural dynamics in solution and the effect of Ni(II) and GTP on protein mobility. The results demonstrate that, although the protein maintains a flexible behavior in the metal and nucleotide bound forms, concomitant addition of Ni(II) and GTP exerts a structural change through the crosstalk of different protein regions

    An Improved Shortcut Design Method of Divided Wall Columns Exemplified by a Liquefied Petroleum Gas Process

    Get PDF
    Designing a sustainable and economical distillation system is a big global challenge in the industrial chemical field. To address this issue, one of most promising solutions is the so-called dividing wall columns addressed in this work, which not only can cut energy cost but also use limited installation space. An improved shortcut design approach is developed in this work to provide accurate models for each section of dividing wall columns; meanwhile Underwood’s and Gilliland’s equations are employed to determine minimum reflux ratio and total number of stages in different column sections in terms of corresponding design specifications and operating conditions. This proposed approach has been applied to separations of mixtures of hydrocarbons and alcohol with different values on the ease of separation index. To test its effectiveness, the preliminary design parameters obtained through the improved proposed shortcut method are further validated by a rigorous simulation in Aspen HYSYS. Furthermore, the results indicate that this method could provide much more accuracy of average interconnecting stream composition of the prefractionator and main column than those of other methods. In practice, this method has been applied to a case of liquefied petroleum gas (LPG) separation with three targeted products in an industrial liquefied petroleum gas plant. The applications and efficiency of the shortcut method in this study lay a theoretical foundation for designing the separation of ideal mixtures involving dividing wall columns

    Conformational selection underlies recognition of a molybdoenzyme by its dedicated chaperone

    Get PDF
    Molecular recognition is central to all biological processes. Understanding the key role played by dedicated chaperones in metalloprotein folding and assembly requires the knowledge of their conformational ensembles. In this study, the NarJ chaperone dedicated to the assembly of the membrane-bound respiratory nitrate reductase complex NarGHI, a molybdenum-iron containing metalloprotein, was taken as a model of dedicated chaperone. The combination of two techniques ie site-directed spin labeling followed by EPR spectroscopy and ion mobility mass spectrometry, was used to get information about the structure and conformational dynamics of the NarJ chaperone upon binding the N-terminus of the NarG metalloprotein partner. By the study of singly spin-labeled proteins, the E119 residue present in a conserved elongated hydrophobic groove of NarJ was shown to be part of the interaction site. Moreover, doubly spin-labeled proteins studied by pulsed double electron-electron resonance (DEER) spectroscopy revealed a large and composite distribution of inter-label distances that evolves into a single preexisting one upon complex formation. Additionally, ion mobility mass spectrometry experiments fully support these findings by revealing the existence of several conformers in equilibrium through the distinction of different drift time curves and the selection of one of them upon complex formation. Taken together our work provides a detailed view of the structural flexibility of a dedicated chaperone and suggests that the exquisite recognition and binding of the N-terminus of the metalloprotein is governed by a conformational selection mechanism

    The NRPD1 N-terminus contains a Pol IV-specific motif that is critical for genome surveillance in Arabidopsis

    Get PDF
    RNA-guided surveillance systems constrain the activity of transposable elements (TEs) in host genomes. In plants, RNA polymerase IV (Pol IV) transcribes TEs into primary transcripts from which RDR2 synthesizes double-stranded RNA precursors for small interfering RNAs (siRNAs) that guide TE methylation and silencing. How the core subunits of Pol IV, homologs of RNA polymerase II subunits, diverged to support siRNA biogenesis in a TE-rich, repressive chromatin context is not well understood. Here we studied the N-terminus of Pol IV’s largest subunit, NRPD1. Arabidopsis lines harboring missense mutations in this N-terminus produce wild-type (WT) levels of NRPD1, which co-purifies with other Pol IV subunits and RDR2. Our in vitro transcription and genomic analyses reveal that the NRPD1 N-terminus is critical for robust Pol IV-dependent transcription, siRNA production and DNA methylation. However, residual RNA-directed DNA methylation observed in one mutant genotype indicates that Pol IV can operate uncoupled from the high siRNA levels typically observed in WT plants. This mutation disrupts a motif uniquely conserved in Pol IV, crippling the enzyme's ability to inhibit retrotransposon mobilization. We propose that the NRPD1 N-terminus motif evolved to regulate Pol IV function in genome surveillance

    Optimized intermolecular potential for nitriles based on Anisotropic United Atoms model

    Get PDF
    An extension of the Anisotropic United Atoms intermolecular potential model is proposed for nitriles. The electrostatic part of the intermolecular potential is calculated using atomic charges obtained by a simple Mulliken population analysis. The repulsion-dispersion interaction parameters for methyl and methylene groups are taken from transferable AUA4 literature parameters [Ungerer et al., J. Chem. Phys., 2000, 112, 5499]. Non-bonding Lennard-Jones intermolecular potential parameters are regressed for the carbon and nitrogen atoms of the nitrile group (–C≡N) from experimental vapor-liquid equilibrium data of acetonitrile. Gibbs Ensemble Monte Carlo simulations and experimental data agreement is very good for acetonitrile, and better than previous molecular potential proposed by Hloucha et al. [J. Chem. Phys., 2000, 113, 5401]. The transferability of the resulting potential is then successfully tested, without any further readjustment, to predict vapor-liquid phase equilibrium of propionitrile and n-butyronitrile

    Fluoride supplements (tablets, drops, lozenges or chewing gums) for preventing dental caries in children.

    Get PDF
    BACKGROUND: Dietary fluoride supplements were first introduced to provide systemic fluoride in areas where water fluoridation is not available. Since 1990, the use of fluoride supplements in caries prevention has been re-evaluated in several countries. OBJECTIVES: To evaluate the efficacy of fluoride supplements for preventing dental caries in children. SEARCH METHODS: We searched the Cochrane Oral Health Group's Trials Register (to 12 October 2011), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 3), MEDLINE via OVID (1950 to 12 October 2011), EMBASE via OVID (1980 to 12 October 2011), WHOLIS/PAHO/MEDCARIB/LILACS/BBO via BIREME (1982 to 12 October 2011), and Current Controlled Trials (to 12 October 2011). We handsearched reference lists of articles and contacted selected authors. SELECTION CRITERIA: We included randomised or quasi-randomised controlled trials comparing, with minimum follow-up of 2 years, fluoride supplements (tablets, drops, lozenges) with no fluoride supplement or with other preventive measures such as topical fluorides in children less than 16 years of age at the start. The main outcome was caries increment measured by the change in decayed, missing and filled tooth surfaces (DMFS). DATA COLLECTION AND ANALYSIS: Two review authors, independently and in duplicate, assessed the eligibility of studies for inclusion, and carried out risk of bias assessment and data extraction. In the event of disagreement, we sought consensus and consulted a third review author. We contacted trial authors for missing information. We used the prevented fraction (PF) as a metric for evaluating the efficacy of the intervention. The PF is defined as the mean caries increment in controls minus mean caries increment in the treated group divided by mean caries increment in controls. We conducted random-effects meta-analyses when data could be pooled. We assessed heterogeneity in the results of the studies by examining forest plots and by using formal tests for homogeneity. We recorded adverse effects (fluorosis) when the studies provided relevant data. MAIN RESULTS: We included 11 studies in the review involving 7196 children.In permanent teeth, when fluoride supplements were compared with no fluoride supplement (three studies), the use of fluoride supplements was associated with a 24% (95% confidence interval (CI) 16 to 33%) reduction in decayed, missing and filled surfaces (D(M)FS). The effect of fluoride supplements was unclear on deciduous or primary teeth. In one study, no caries-inhibiting effect was observed on deciduous teeth while in another study, the use of fluoride supplements was associated with a substantial reduction in caries increment.When fluoride supplements were compared with topical fluorides or with other preventive measures, there was no differential effect on permanent or deciduous teeth.The review found limited information on the adverse effects associated with the use of fluoride supplements. AUTHORS' CONCLUSIONS: This review suggests that the use of fluoride supplements is associated with a reduction in caries increment when compared with no fluoride supplement in permanent teeth. The effect of fluoride supplements was unclear on deciduous teeth. When compared with the administration of topical fluorides, no differential effect was observed. We rated 10 trials as being at unclear risk of bias and one at high risk of bias, and therefore the trials provide weak evidence about the efficacy of fluoride supplements

    Controlling Solvation and Mass Transport Properties of Biobased Solvents through CO2 Expansion: A Physicochemical and Molecular Modeling Study

    Get PDF
    Gas-expanded liquids have been studied during past years; however, the physicochemical properties of some of these fluids still need to be characterized and understood. In particular, the study of properties concerning solvation and mass transport is key for industrial applications. This work presents the characterization of eight CO2-expanded biosourced solvents: organic carbonates (dimethyl, diethyl, ethylene, and propylene carbonates), anisole, veratrole, Îł-valerolactone, and 2-methyltetrahydrofuran. Two approaches have been used: spectroscopic measurements and molecular modeling. Phase equilibrium was determined for each CO2/biosourced solvent system, and then the solvatochromic probe Nile Red was used to determine changes in dipolarity/polarizability (π* Kamlet–Taft parameter) by CO2 pressure. Molecular dynamics calculations were performed to determine the density and viscosity changes with CO2 pressure. It is shown in this study that the degree of modulation of dipolarity/polarizability parameter can go from that of pure solvent (around 0.4 for linear organic carbonates) to negative values, close to that of pure CO2 at the T and P used in this study. Concerning transport properties, such as density and viscosity, a great decrease in both these properties’ values was observed after swelling of the solvent by CO2, for instance, in linear organic carbonates where density can decrease to 50% the density of pure solvent; concerning viscosity a decrease of up to 90% was measured for these compounds. It was observed that the solubility of CO2 and then modulation of properties were higher in linear organic carbonates than in the cyclic ones. This study shows once more that CO2 has a great capacity to be used as a knob for triggering changes in the physicochemical properties of green biosourced solvents that can help to implement these solvents in industrial applications
    • 

    corecore