8,074 research outputs found

    Flash of photons from the early stage of heavy-ion collisions

    Get PDF
    The dynamics of partonic cascades may be an important aspect for particle production in relativistic collisions of nuclei at CERN SPS and BNL RHIC energies. Within the Parton-Cascade Model, we estimate the production of single photons from such cascades due to scattering of quarks and gluons q g -> q gamma, quark-antiquark annihilation q qbar -> g gamma, or gamma gamma, and from electromagnetic brems-strahlung of quarks q -> q gamma. We find that the latter QED branching process plays the dominant role for photon production, similarly as the QCD branchings q -> q g and g -> g g play a crucial role for parton multiplication. We conclude therefore that photons accompanying the parton cascade evolution during the early stage of heavy-ion collisions shed light on the formation of a partonic plasma.Comment: 4 pages including 3 postscript figure

    Quantum Field Kinetics

    Get PDF
    Using the general framework of quantum field theory, we derive basic equations of quantum field kinetics. The main goal of this approach is to compute the observables associated with a quark-gluon plasma at different stages of its evolution. We start by rewriting the integral equations for the field correlators in different forms, depending on the relevant dynamical features at each different stage. Next, two versions of perturbation expansion are considered. The first is best suited for the calculation of electromagnetic emission from chaotic, but not equilibrated, strongly interacting matter. The second version allows one to derive evolution equations, which are generalizations of the familiar QCD evolution equations, and provide a basis for the calculation of the initial quark and gluon distributions after the first hard interaction of the heavy ions.Comment: 13 pages, REVTeX, 2 postscript figures appende

    Reflection and interference of electromagnetic waves in inhomogeneous media

    Get PDF
    Solutions were obtained of the wave equation for a plane horizontally polarized electro-magnetic wave incident on a semi infinite two dimensional inhomogeneous medium. Two problems were considered: An inhomogeneous half space, and an inhomogeneous layer of arbitrary thickness. Solutions of the wave equation were obtained in terms of Hankel functions with complex arguments. Numerical calculations were made of the reflection coefficient R at the interface of the homogeneous medium. The startling results show that the reflection coefficient for a complex dielectric constant with gradient, can be less than that of the same medium with zero gradient

    Space station integrated wall design and penetration damage control. Task 3: Theoretical analysis of penetration mechanics

    Get PDF
    The efforts to provide a penetration code called PEN4 version 10 is documented for calculation of projectile and target states for the impact of 2024-T3 aluminum, R sub B 90 1018 steel projectiles and icy meteoroids onto 2024-T3 aluminum plates at impact velocities from 0 to 16 km/s. PEN4 determines whether a plate is perforated by calculating the state of fragmentation of projectile and first plate. Depth of penetration into the second to n sup th plate by fragments resulting from first plate perforation is determined by multiple cratering. The results from applications are given

    AHST 251.01S: Surgical Clinicals II

    Get PDF

    AHST 101.01: Introduction to Surgical Technology

    Get PDF

    AHST 298.01E: Surgical Internship

    Get PDF

    Help Our Young Folks Help Themselves

    Get PDF
    What kind of recreation and entertainment do rural young people between the ages of 16 and 25 enjoy most? And do the activities now available to rural young people satisfy their needs

    Analysis of reaction dynamics at RHIC in a combined parton/hadron transport approach

    Get PDF
    We introduce a transport approach which combines partonic and hadronic degrees of freedom on an equal footing and discuss the resulting reaction dynamics. The initial parton dynamics is modeled in the framework of the parton cascade model, hadronization is performed via a cluster hadronization model and configuration space coalescence, and the hadronic phase is described by a microscopic hadronic transport approach. The resulting reaction dynamics indicates a strong influence of hadronic rescattering on the space-time pattern of hadronic freeze-out and on the shape of transverse mass spectra. Freeze-out times and transverse radii increase by factors of 2 - 3 depending on the hadron species.Comment: 10 pages, 4 eps figures include
    corecore