146 research outputs found

    Superconductivity of polar many-valley semiconductors and semimetals

    Get PDF
    A polar, degenerate semiconductor with two equivalent isotropic valleys, and a semimetal with equal effective masses for the holes and electrons were studied within the framework of a modified Gurevich-Larkin-Firsov model by taking into account the intervalley pairing. Concentration dependencies are found for the critical temperature which agree qualitatively with experimental data for SrTiO3 and BaPb(1-x)Bi(x)O3

    Synthesis, Characterization, and Finite Size Effects on Electrical Transport of Nanoribbons of the Charge-Density Wave Conductor NbSe3

    Full text link
    NbSe3 exhibits remarkable anisotropy in most of its physical properties and has been a model system for studies of quasi-one-dimensional charge-density-wave (CDW) phenomena. Herein, we report the synthesis, characterization, and electrical transport of single-crystalline NbSe3 nanoribbons by a facile one-step vapour transport process involving the transport of selenium powder onto a niobium foil substrate. Our investigations aid the understanding of the CDW nature of NbSe3 and the growth process of the material. They also indicate that NbSe3 nanoribbons have enhanced CDW properties compared to those of the bulk phase due to size confinement effects, thus expanding the search for new mesoscopic phenomena at the nanoscale level. Single nanoribbon measurements on the electrical resistance as a function of temperature show charge-density wave transitions at 59 K and 141 K. We also demonstrate significant enhancement in the depinning effect and sliding regimes mainly attributed to finite size effects.Comment: Version accepted for publicatio

    Formation of singularities on the surface of a liquid metal in a strong electric field

    Full text link
    The nonlinear dynamics of the free surface of an ideal conducting liquid in a strong external electric field is studied. It is establish that the equations of motion for such a liquid can be solved in the approximation in which the surface deviates from a plane by small angles. This makes it possible to show that on an initially smooth surface for almost any initial conditions points with an infinite curvature corresponding to branch points of the root type can form in a finite time.Comment: 14 page

    Discovery of an unusual bright eclipsing binary with the longest known period: TYC 2505-672-1 / MASTER OT J095310.04+335352.8

    Full text link
    We report on the MASTER Global Robotic Net discovery of an eclipsing binary, MASTER OT J095310.04+335352.8, previously known as unremarkable star TYC 2505-672-1, which displays extreme orbital parameters. The orbital period P=69.1 yr is more than 2.5 times longer than that of epsilon-Aurigae, which is the previous record holder. The light curve is characterized by an extremely deep total eclipse with a depth of more than 4.5 mag, which is symmetrically shaped and has a total duration of 3.5 yrs. The eclipse is essentially gray. The spectra acquired with the Russian 6 m BTA telescope both at minimum and maximum light mainly correspond to an M0-1III--type red giant, but the spectra taken at the bottom of eclipse show small traces of a sufficiently hot source. The observed properties of this system can be better explained as the red giant eclipsed by a large cloud (the disk) of small particles surrounding the invisible secondary companion.Comment: 8 figures, 9 pages, Astronomy and astrophysics in prin

    Dynamics of the Free Surface of a Conducting Liquid in a Near-Critical Electric Field

    Full text link
    Near-critical behavior of the free surface of an ideally conducting liquid in an external electric field is considered. Based on an analysis of three-wave processes using the method of integral estimations, sufficient criteria for hard instability of a planar surface are formulated. It is shown that the higher-order nonlinearities do not saturate the instability, for which reason the growth of disturbances has an explosive character.Comment: 19 page

    Fermi surface nesting in several transition metal dichalcogenides

    Get PDF
    By means of high-resolution angle resolved photoelectron spectroscopy (ARPES) we have studied the fermiology of 2H transition metal dichalcogenide polytypes TaSe2, NbSe2, and Cu0.2NbS2. The tight-binding model of the electronic structure, extracted from ARPES spectra for all three compounds, was used to calculate the Lindhard function (bare spin susceptibility), which reflects the propensity to charge density wave (CDW) instabilities observed in TaSe2 and NbSe2. We show that though the Fermi surfaces of all three compounds possess an incommensurate nesting vector in the close vicinity of the CDW wave vector, the nesting and ordering wave vectors do not exactly coincide, and there is no direct relationship between the magnitude of the susceptibility at the nesting vector and the CDW transition temperature. The nesting vector persists across the incommensurate CDW transition in TaSe2 as a function of temperature despite the observable variations of the Fermi surface geometry in this temperature range. In Cu0.2NbS2 the nesting vector is present despite different doping level, which lets us expect a possible enhancement of the CDW instability with Cu-intercalation in the CuxNbS2 family of materials.Comment: Accepted to New J. Phy

    Energetics of metal slabs and clusters: the rectangle-box model

    Full text link
    An expansion of energy characteristics of wide thin slab of thickness L in power of 1/L is constructed using the free-electron approximation and the model of a potential well of finite depth. Accuracy of results in each order of the expansion is analyzed. Size dependences of the work function and electronic elastic force for Au and Na slabs are calculated. It is concluded that the work function of low-dimensional metal structure is always smaller that of semi-infinite metal sample. A mechanism for the Coulomb instability of charged metal clusters, different from Rayleigh's one, is discussed. The two-component model of a metallic cluster yields the different critical sizes depending on a kind of charging particles (electrons or ions). For the cuboid clusters, the electronic spectrum quantization is taken into account. The calculated critical sizes of Ag_{N}^{2-} and Au_{N}^{3-} clusters are in a good agreement with experimental data. A qualitative explanation is suggested for the Coulomb explosion of positively charged Na_{\N}^{n+} clusters at 3<n<5.Comment: 11 pages, 6 figures, 1 tabl

    Optical polarization observations with the MASTER robotic net

    Full text link
    We present results of optical polarization observations performed with the MASTER robotic net for three types of objects: gamma-ray bursts, supernovae, and blazars. For the Swift gamma-ray bursts GRB100906A, GRB110422A, GRB121011A, polarization observations were obtained during very early stages of optical emission. For GRB100906A it was the first prompt optical polarization observation in the world. Photometry in polarizers is presented for Type Ia Supernova 2012bh during 20 days, starting on March 27, 2012. We find that the linear polarization of SN 2012bh at the early stage of the envelope expansion was less than 3%. Polarization measurements for the blazars OC 457, 3C 454.3, QSO B1215+303, 87GB 165943.2+395846 at single nights are presented. We infer the degree of the linear polarization and polarization angle. The blazars OC 457 and 3C 454.3 were observed during their periods of activity. The results show that MASTER is able to measure substantially polarized light; at the same time it is not suitable for determining weak polarization (less than 5%) of dim objects (fainter than 16m^m). Polarimetric observations of the optical emission from gamma-ray bursts and supernovae are necessary to investigate the nature of these transient objects.Comment: 31 pages, 12 figures, 4 tables; Exposure times in Table 2 have been correcte

    Coexistence of Superconductivity and Charge Density Wave in SrPt2As2

    Full text link
    SrPt2As2 is a novel arsenide superconductor, which crystallizes in the CaBe2Ge2-type structure as a different polymorphic form of the ThCr2Si2-type structure. SrPt2As2 exhibits a charge-density-wave (CDW) ordering at about 470 K and enters into a superconducting state at Tc = 5.2 K. The coexistence of superconductivity and CDW refers to Peierls instability with a moderately strong electron-phonon interaction. Thus SrPt2As2 can be viewed as a nonmagnetic analog of iron-based superconductors, such as doped BaFe2As2, in which superconductivity emerges in close proximity to spin-density-wave ordering.Comment: 4 pages, 5 figure
    corecore