3,480 research outputs found

    Beyond the veil: Inner horizon instability and holography

    Full text link
    We show that scalar perturbations of the eternal, rotating BTZ black hole should lead to an instability of the inner (Cauchy) horizon, preserving strong cosmic censorship. Because of backscattering from the geometry, plane wave modes have a divergent stress tensor at the event horizon, but suitable wavepackets avoid this difficulty, and are dominated at late times by quasinormal behavior. The wavepackets have cuts in the complexified coordinate plane that are controlled by requirements of continuity, single-valuedness and positive energy. Due to a focusing effect, regular wavepackets nevertheless have a divergent stress-energy at the inner horizon, signaling an instability. This instability, which is localized behind the event horizon, is detected holographically as a breakdown in the semiclassical computation of dual CFT expectation values in which the analytic behavior of wavepackets in the complexified coordinate plane plays an integral role. In the dual field theory, this is interpreted as an encoding of physics behind the horizon in the entanglement between otherwise independent CFTs.Comment: 40 pages, LaTeX, 3 eps figures, v2: references adde

    Linearized gravity and gauge conditions

    Get PDF
    In this paper we consider the field equations for linearized gravity and other integer spin fields on the Kerr spacetime, and more generally on spacetimes of Petrov type D. We give a derivation, using the GHP formalism, of decoupled field equations for the linearized Weyl scalars for all spin weights and identify the gauge source functions occuring in these. For the spin weight 0 Weyl scalar, imposing a generalized harmonic coordinate gauge yields a generalization of the Regge-Wheeler equation. Specializing to the Schwarzschild case, we derive the gauge invariant Regge-Wheeler and Zerilli equation directly from the equation for the spin 0 scalar.Comment: 24 pages, corresponds to published versio

    Towards quantum superpositions of a mirror

    Get PDF
    We propose a scheme for creating quantum superposition states involving of order 101410^{14} atoms via the interaction of a single photon with a tiny mirror. This mirror, mounted on a high-quality mechanical oscillator, is part of a high-finesse optical cavity which forms one arm of a Michelson interferometer. By observing the interference of the photon only, one can study the creation and decoherence of superpositions involving the mirror. All experimental requirements appear to be within reach of current technology.Comment: 5 pages, 2 figures, submitted to Phys. Rev. Let

    Phenomenological analysis of quantum collapse as source of the seeds of cosmic structure

    Full text link
    The standard inflationary version of the origin of the cosmic structure as the result of the quantum fluctuations during the early universe is less than fully satisfactory as has been argued in [A. Perez, H. Sahlmann, and D. Sudarsky, Class. Quantum Grav., 23, 2317, (2006)]. A proposal is made there of a way to address the shortcomings by invoking a process similar to the collapse of the quantum mechanical wave function of the various modes of the inflaton field. This in turn was inspired on the ideas of R. Penrose about the role that quantum gravity might play in bringing about such breakdown of the standard unitary evolution of quantum mechanics. In this paper we study in some detail the two schemes of collapse considered in the original work together with an alternative scheme, which can be considered as "more natural" than the former two. The new scheme, assumes that the collapse follows the correlations indicated in the Wigner functional of the initial state. We end with considerations regarding the degree to which the various schemes can be expected to produce a spectrum that resembles the observed one.Comment: 18 pages, 9 figure

    Theorems on gravitational time delay and related issues

    Get PDF
    Two theorems related to gravitational time delay are proven. Both theorems apply to spacetimes satisfying the null energy condition and the null generic condition. The first theorem states that if the spacetime is null geodesically complete, then given any compact set KK, there exists another compact set KK' such that for any p,q∉Kp,q \not\in K', if there exists a ``fastest null geodesic'', γ\gamma, between pp and qq, then γ\gamma cannot enter KK. As an application of this theorem, we show that if, in addition, the spacetime is globally hyperbolic with a compact Cauchy surface, then any observer at sufficiently late times cannot have a particle horizon. The second theorem states that if a timelike conformal boundary can be attached to the spacetime such that the spacetime with boundary satisfies strong causality as well as a compactness condition, then any ``fastest null geodesic'' connecting two points on the boundary must lie entirely within the boundary. It follows from this theorem that generic perturbations of anti-de Sitter spacetime always produce a time delay relative to anti-de Sitter spacetime itself.Comment: 15 pages, 1 figure. Example of gauge perturbation changed/corrected. Two footnotes added and one footnote remove

    The Positivity of Energy for Asymptotically Anti-de Sitter Spacetimes

    Full text link
    We use the formulation of asymptotically anti-de Sitter boundary conditions given by Ashtekar and Magnon to obtain a coordinate expression for the general asymptotically AdeS metric in a neighbourhood of infinity. From this, we are able to compute the time delay of null curves propagating near infinity. If the gravitational mass is negative, so will be the time delay (relative to null geodesics at infinity) for certain null geodesics in the spacetime. Following closely an argument given by Penrose, Sorkin, and Woolgar, who treated the asymptotically flat case, we are then able to argue that a negative time delay is inconsistent with non-negative matter-energies in spacetimes having good causal properties. We thereby obtain a new positive mass theorem for these spacetimes. The theorem may be applied even when the matter flux near the boundary-at-infinity falls off so slowly that the mass changes, provided the theorem is applied in a time-averaged sense. The theorem also applies in certain spacetimes having local matter-energy that is sometimes negative, as can be the case in semi-classical gravity.Comment: (Plain TeX - figures not included

    Twistor-Beam Excitations of Black-Holes and Prequantum Kerr-Schild Geometry

    Full text link
    Exact Kerr-Schild (KS) solutions for electromagnetic excitations of black-holes, have the form of singular beams supported on twistor lines of the KS geometry. These beams have a very strong back-reaction on the metric and horizon and create a fluctuating KS geometry occupying an intermediate position between the classical and quantum gravities. We consider the Kerr theorem, which determines the twistor structure of the KS geometry and the corresponding holographic prequantum space-time adapted to subsequent quantum treatment.Comment: 7 pages, 3 Figures. Published version. Talk at the SFT09 conference, MIAN (Steklov Math. Institute), April 200

    Tuning Rashba and Dresselhaus spin-orbit couplings: Effects on singlet and triplet condensation with Fermi atoms

    Full text link
    We investigate the pair condensation of a two-spin-component Fermi gas in the presence of both Rashba and Dresselhaus spin-orbit couplings. We calculate the condensate fraction in the BCS-BEC crossover both in two and in three dimensions by taking into account singlet and triplet pairings. These quantities are studied by varying the spin-orbit interaction from the case with the only Rashba to the equal-Rashba-Dresselhaus one. We find that, by mixing the two couplings, the singlet pairing decreases while the triplet pairing is suppressed in the BCS regime and increased in the BEC regime, both in two and three dimensions. At fixed spin-orbital strength, the greatest total condensate fraction is obtained when only one coupling (only Rashba or only Dresselhaus) is present.Comment: 9 pages, 6 figures, final versio

    Brain neurons as quantum computers: {\it in vivo} support of background physics

    Full text link
    The question: whether quantum coherent states can sustain decoherence, heating and dissipation over time scales comparable to the dynamical timescales of the brain neurons, is actively discussed in the last years. Positive answer on this question is crucial, in particular, for consideration of brain neurons as quantum computers. This discussion was mainly based on theoretical arguments. In present paper nonlinear statistical properties of the Ventral Tegmental Area (VTA) of genetically depressive limbic brain are studied {\it in vivo} on the Flinders Sensitive Line of rats (FSL). VTA plays a key role in generation of pleasure and in development of psychological drug addiction. We found that the FSL VTA (dopaminergic) neuron signals exhibit multifractal properties for interspike frequencies on the scales where healthy VTA dopaminergic neurons exhibit bursting activity. For high moments the observed multifractal (generalized dimensions) spectrum coincides with the generalized dimensions spectrum calculated for a spectral measure of a {\it quantum} system (so-called kicked Harper model, actively used as a model of quantum chaos). This observation can be considered as a first experimental ({\it in vivo}) indication in the favour of the quantum (at least partially) nature of the brain neurons activity

    Self-Similar Collapse of Conformally Coupled Scalar Fields

    Full text link
    A massless scalar field minimally coupled to the gravitational field in a simplified spherical symmetry is discussed. It is shown that, in this case, the solution found by Roberts, describing a scalar field collapse, is in fact the most general one. Taking that solution as departure point, a study of the gravitational collapse for the self-similar conformal case is presented.Comment: 9 pages, accepted for publication, Classical and Quantum Gravity. Available at http://dft.if.uerj.br/preprint/e-17.tex or at ftp://dft.if.uerj.br/preprint/e-17.tex . Figures can be obtained on request at [email protected]
    corecore