13,972 research outputs found
Integrative Model-based clustering of microarray methylation and expression data
In many fields, researchers are interested in large and complex biological
processes. Two important examples are gene expression and DNA methylation in
genetics. One key problem is to identify aberrant patterns of these processes
and discover biologically distinct groups. In this article we develop a
model-based method for clustering such data. The basis of our method involves
the construction of a likelihood for any given partition of the subjects. We
introduce cluster specific latent indicators that, along with some standard
assumptions, impose a specific mixture distribution on each cluster. Estimation
is carried out using the EM algorithm. The methods extend naturally to multiple
data types of a similar nature, which leads to an integrated analysis over
multiple data platforms, resulting in higher discriminating power.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS533 the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Evidence of Reduced Global Processing in Autism Spectrum Disorder
Frith’s original notion of ‘weak central coherence’ suggested that increased local processing in autism spectrum disorder (ASD) resulted from reduced global processing. More recent accounts have emphasised superior local perception and suggested intact global integration. However, tasks often place local and global processing in direct trade-off, making it difficult to determine whether group differences reflect reduced global processing, increased local processing, or both. We present two measures of global integration in which poor performance could not reflect increased local processing. ASD participants were slower to identify fragmented figures and less sensitive to global geometric impossibility than IQ-matched controls. These findings suggest that reduced global integration comprises one important facet of weak central coherence in ASD
Is U3Ni3Sn4 best described as near a quantum critical point?
Although most known non-Fermi liquid (NFL) materials are structurally or
chemically disordered, the role of this disorder remains unclear. In
particular, very few systems have been discovered that may be stoichiometric
and well ordered. To test whether U3Ni3Sn4 belongs in this latter class, we
present measurements of the x-ray absorption fine structure (XAFS) of
polycrystalline and single-crystal U3Ni3Sn4 samples that are consistent with no
measurable local structural disorder. We also present temperature-dependent
specific heat data in applied magnetic fields as high as 8 T that show features
that are inconsistent with the antiferromagnetic Griffiths' phase model, but do
support the conclusion that a Fermi liquid/NFL crossover temperature increases
with applied field. These results are inconsistent with theoretical
explanations that require strong disorder effects, but do support the view that
U3Ni3Sn4 is a stoichiometric, ordered material that exhibits NFL behavior, and
is best described as being near an antiferromagnetic quantum critical point.Comment: 9 pages, 8 figures, in press with PR
Quantifying structural damage from self-irradiation in a plutonium superconductor
The 18.5 K superconductor PuCoGa5 has many unusual properties, including
those due to damage induced by self-irradiation. The superconducting transition
temperature decreases sharply with time, suggesting a radiation-induced Frenkel
defect concentration much larger than predicted by current radiation damage
theories. Extended x-ray absorption fine-structure measurements demonstrate
that while the local crystal structure in fresh material is well ordered, aged
material is disordered much more strongly than expected from simple defects,
consistent with strong disorder throughout the damage cascade region. These
data highlight the potential impact of local lattice distortions relative to
defects on the properties of irradiated materials and underscore the need for
more atomic-resolution structural comparisons between radiation damage
experiments and theory.Comment: 7 pages, 5 figures, to be published in PR
Monte Carlo Determination of Multiple Extremal Eigenpairs
We present a Monte Carlo algorithm that allows the simultaneous determination
of a few extremal eigenpairs of a very large matrix without the need to compute
the inner product of two vectors or store all the components of any one vector.
The new algorithm, a Monte Carlo implementation of a deterministic one we
recently benchmarked, is an extension of the power method. In the
implementation presented, we used a basic Monte Carlo splitting and termination
method called the comb, incorporated the weight cancellation method of Arnow
{\it et al.}, and exploited a new sampling method, the sewing method, that does
a large state space sampling as a succession of small state space samplings. We
illustrate the effectiveness of the algorithm by its determination of the two
largest eigenvalues of the transfer matrices for variously-sized
two-dimensional, zero field Ising models. While very likely useful for other
transfer matrix problems, the algorithm is however quite general and should
find application to a larger variety of problems requiring a few dominant
eigenvalues of a matrix.Comment: 22 pages, no figure
Horizon energy and angular momentum from a Hamiltonian perspective
Classical black holes and event horizons are highly non-local objects,
defined in terms of the causal past of future null infinity. Alternative,
(quasi)local definitions are often used in mathematical, quantum, and numerical
relativity. These include apparent, trapping, isolated, and dynamical horizons,
all of which are closely associated to two-surfaces of zero outward null
expansion. In this paper we show that three-surfaces which can be foliated with
such two-surfaces are suitable boundaries in both a quasilocal action and a
phase space formulation of general relativity. The resulting formalism provides
expressions for the quasilocal energy and angular momentum associated with the
horizon. The values of the energy and angular momentum are in agreement with
those derived from the isolated and dynamical horizon frameworks.Comment: 39 pages, 3 figures, Final Version : content essentially unchanged
but many small improvements made in response to referees, a few references
adde
Probing 5f-state configurations in URu2Si2 with U L3-edge resonant x-ray emission spectroscopy
Resonant x-ray emission spectroscopy (RXES) was employed at the U L3
absorption edge and the La1 emission line to explore the 5f occupancy, nf, and
the degree of 5f orbital delocalization in the hidden order compound URu2Si2.
By comparing to suitable reference materials such as UF4, UCd11, and alpha-U,
we conclude that the 5f orbital in URu2Si2 is at least partially delocalized
with nf = 2.87 +/- 0.08, and does not change with temperature down to 10 K
within the estimated error. These results place further constraints on
theoretical explanations of the hidden order, especially those requiring a
localized f2 ground state.Comment: 11 pages,7 figure
Quasinormal modes for the charged Vaidya metric
The scalar wave equation is considered in the background of a charged Vaidya
metric in double null coordinates describing a non-stationary charged
black hole with varying mass and charge . The resulting
time-dependent quasinormal modes are presented and analyzed. We show, in
particular, that it is possible to identify some signatures in the quasinormal
frequencies from the creation of a naked singularity.Comment: 4 pages. Prepared for the proceedings of the Spanish Relativity
meeting (ERE2010), Granada, Spain, September 6-10, 201
- …