70 research outputs found

    Measurements of Gd 152 (p,γ) Tb 153 and Gd 152 (p,n) Tb 152 reaction cross sections for the astrophysical γ process

    Get PDF
    The total cross sections for the Gd152(p,γ)Tb153 and Gd152(p,n)152Tb reactions have been measured by the activation method at effective center-of-mass energies 3.47≤Ec.m.eff≤7.94 MeV and 4.96≤Ec.m.eff≤7.94 MeV, respectively. The targets were prepared by evaporation of 30.6% isotopically enriched Gd152 oxide on aluminum backing foils, and bombarded with proton beams provided by a cyclotron accelerator. The cross sections were deduced from the observed γ-ray activity, which was detected off-line by an HPGe detector in a low background environment. The results are presented and compared with predictions of statistical model calculations. This comparison supports a modified optical proton+Gd152 potential suggested earlier.Peer reviewedFinal Accepted Versio

    Alpha-induced cross sections of 106Cd for the astrophysical p-process

    Get PDF
    The 106Cd(alpha,gamma)110Sn reaction cross section has been measured in the energy range of the Gamow window for the astrophysical p-process scenario. The cross sections for 106Cd(alpha,n)109Sn and for 106Cd(alpha,p)109In below the (alpha,n) threshold have also been determined. The results are compared with predictions of the statistical model code NON-SMOKER using different input parameters. The comparison shows that a discrepancy for 106Cd(alpha,gamma)110Sn when using the standard optical potentials can be removed with a different alpha+106Cd potential. Some astrophysical implications are discussed.Comment: 10 pages, 9 figures, accepted for publication in Phys. Rev

    Alpha-induced reactions for the astrophysical p-process: the case of 151Eu

    Get PDF
    The cross sections of 151Eu(alpha,gamma)155Tb and 151Eu(alpha,n)154Tb reactions have been measured with the activation method. Some aspects of the measurement are presented here to illustrate the requirements of experimental techniques needed to obtain nuclear data for the astrophysical p-process nucleosynthesis. Preliminary cross section results are also presented and compared with the predictions of statistical model calculations.Comment: Accepted for publication in Journal of Physics Conference Series, proceeding of the Nuclear Physics in Astrophysics IV. conferenc

    Measurements of proton induced reaction cross sections on 120Te for the astrophysical p-process

    Full text link
    The total cross sections for the 120Te(p,gamma)121I and 120Te(p,n)120I reactions have been measured by the activation method in the effective center-of-mass energies between 2.47 MeV and 7.93 MeV. The targets were prepared by evaporation of 99.4 % isotopically enriched 120Te on Aluminum and Carbon backing foils, and bombarded with proton beams provided by the FN tandem accelerator at the University of Notre Dame. The cross sections and SS factors were deduced from the observed gamma ray activity, which was detected off-line by two Clover HPGe detectors mounted in close geometry. The results are presented and compared with the predictions of statistical model calculations using the codes NON-SMOKER and TALYS.Comment: 17 pages, 5 figures, 5 tables, regular articl

    Cd110,116(α,α)Cd110,116 elastic scattering and systematic investigation of elastic α scattering cross sections along the Z=48 isotopic and N=62 isotonic chains

    Get PDF
    The elastic scattering cross sections for the reactions Cd110,116(α,α)Cd110,116 at energies above and below the Coulomb barrier are presented to provide a sensitive test for the α-nucleus optical potential parameter sets. Additional constraints for the optical potential are taken from the analysis of elastic scattering excitation functions at backward angles which are available in literature. Moreover, the variation of the elastic α scattering cross sections along the Z=48 isotopic and N=62 isotonic chain is investigated by the study of the ratios of the Cd106,110,116(α,α)Cd106,110,116 scattering cross sections at E cm15.6and18.8 MeV and the ratio of the Cd110(α,α)Cd110 and Sn112(α,α)Sn112 reaction cross sections at Ecm18.8 MeV, respectively. These ratios are sensitive probes for the α-nucleus optical potential parametrizations. The potentials under study are a basic prerequisite for the prediction of α-induced reaction cross sections (e.g., for the calculation of stellar reaction rates in the astrophysical p or γ process). © 2011 American Physical Society.This work was supported by the EUROGENESIS research program, by the Hungarian Office of the National Scientific Research Fund (OTKA), Grants No. NN83261 and No. K068801, by the European Research Council, Grant No. 203175, and by the Joint Institute for Nuclear Astrophysics (NSF Grant No. PHY0822648). G.G.K. and D.G. acknowledge the support of the Spanish Interministerial Commission of Science and Technology, under Project No. FPA2005-02379, and the Ministry of Education and Science (MEC) Consolider, Project No. CSD2007-00042. G.G. acknowledges support from the Bolyai grant. D.G. acknowledges support from the Spanish Ministry of Science Juan de la Cierva grant. This work was also supported by the Scientific and Technological Research Council of Turkey (TUBITAK), Grants No. 108T508 (TBAG1001) and No. 109T585 (under the EUROGENESIS research program). Fruitful discussions with M. Avrigeanu are gratefully acknowledged.Peer Reviewe

    Test of statistical model cross section calculations for α -induced reactions on Ag 107 at energies of astrophysical interest

    Get PDF
    Background: Astrophysical reaction rates, which are mostly derived from theoretical cross sections, are necessary input to nuclear reaction network simulations for studying the origin of p nuclei. Past experiments have found a considerable difference between theoretical and experimental cross sections in some cases, especially for (α,γ) reactions at low energy. Therefore, it is important to experimentally test theoretical cross section predictions at low, astrophysically relevant energies. Purpose: The aim is to measure reaction cross sections of Ag107(α,γ)In111 and Ag107(α,n)In110 at low energies in order to extend the experimental database for astrophysical reactions involving α particles towards lower mass numbers. Reaction rate predictions are very sensitive to the optical model parameters and this introduces a large uncertainty into theoretical rates involving α particles at low energy. We have also used Hauser-Feshbach statistical model calculations to study the origin of possible discrepancies between prediction and data. Method: An activation technique has been used to measure the reaction cross sections at effective center of mass energies between 7.79 MeV and 12.50 MeV. Isomeric and ground state cross sections of the (α,n) reaction were determined separately. Results: The measured cross sections were found to be lower than theoretical predictions for the (α,γ) reaction. Varying the calculated averaged widths in the Hauser-Feshbach model, it became evident that the data for the (α,γ) and (α,n) reactions can only be simultaneously reproduced when rescaling the ratio of γ to neutron width and using an energy-dependent imaginary part in the optical α+Ag107 potential. Conclusions: The new data extend the range of measured charged-particle cross sections for astrophysical applications to lower mass numbers and lower energies. The modifications in the model predictions required to reproduce the present data are fully consistent with what was found in previous investigations. Thus, our results confirm the previously suggested energy-dependent modification of the optical α+nucleus potential.Peer reviewedFinal Accepted Versio

    High precision 113In(α,α)113In elastic scattering at energies near the Coulomb barrier for the astrophysical γ process

    Get PDF
    Background: The γ process in supernova explosions is thought to explain the origin of proton-rich isotopes between Se and Hg, the so-called p nuclei. The majority of the reaction rates for γ process reaction network studies have to be predicted in Hauser-Feshbach statistical model calculations using global optical potential parametrizations. While the nucleon+nucleus optical potential is fairly well known, for the α+nucleus optical potential several different parametrizations exist and large deviations are found between the predictions calculated using different parameter sets.Purpose: By the measurement of elastic α-scattering angular distributions at energies around the Coulomb barrier a comprehensive test for the different global α+nucleus optical potential parameter sets is provided. Methods: Between 20∘ and 175∘ complete elastic alpha scattering angular distributions were measured on the 113In p nucleus with high precision at Ec.m.=15.59 and 18.82 MeV. Results: The elastic scattering cross sections of the 113In(α,α)113In reaction were measured for the first time at energies close to the astrophysically relevant energy region. The high precision experimental data were used to evaluate the predictions of the recent global and regional α+nucleus optical potentials. Parameters for a local α+nucleus optical potential were derived from the measured angular distributions. Conclusions: Predictions for the reaction cross sections of 113In(α,γ)117Sb and 113In(α,n)116Sb at astrophysically relevant energies were given using the global and local optical potential parametrizations.Peer reviewe

    Investigation of α -induced reactions on Sb isotopes relevant to the astrophysical γ process

    Get PDF
    This document is the Accepted Manuscript version of the following article: Z. Korkulu, et al, ‘Investigation of α-induced reactions on Sb isotopes relevant to the astrophysical γ process’, Physical Review C, Vol. 97(4): 045803, April 2018, available online at DOI: https://doi.org/10.1103/PhysRevC.97.045803 © 2018 American Physical Society.Background: The reaction rates used in γ-process nucleosynthesis network calculations are mostly derived from theoretical, statistical model cross sections. Experimental data is scarce for charged particle reactions at astrophysical, low energies. Where experimental (α,γ) data exists, it is often strongly overestimated by Hauser-Feshbach statistical model calculations. Further experimental α-capture cross sections in the intermediate and heavy mass region are necessary to test theoretical models and to gain understanding of heavy element nucleosynthesis in the astrophysical γ process. Purpose: The aim of the present work is to measure the Sb121(α,γ)I125, Sb121(α,n)I124, and Sb123(α,n)I126 reaction cross sections. These measurements are important tests of astrophysical reaction rate predictions and extend the experimental database required for an improved understanding of p-isotope production. Method: The α-induced reactions on natural and enriched antimony targets were investigated using the activation technique. The (α,γ) cross sections of Sb121 were measured and are reported for the first time. To determine the cross section of the Sb121(α,γ)I125, Sb121(α,n)I124, and Sb123(α,n)I126 reactions, the yields of γ rays following the β decay of the reaction products were measured. For the measurement of the lowest cross sections, the characteristic x rays were counted with a low-energy photon spectrometer detector. Results: The cross section of the Sb121(α,γ)I125, Sb121(α,n)I124, and Sb123(α,n)I126 reactions were measured with high precision in an energy range between 9.74 and 15.48 MeV, close to the astrophysically relevant energy window. The results are compared with the predictions of statistical model calculations. The (α,n) data show that the α widths are predicted well for these reactions. The (α,γ) results are overestimated by the calculations but this is because of the applied neutron and γ widths. Conclusions: Relevant for the astrophysical reaction rate is the α width used in the calculations. While for other reactions the α widths seem to have been overestimated and their energy dependence was not described well in the measured energy range, this is not the case for the reactions studied here. The result is consistent with the proposal that additional reaction channels, such as Coulomb excitation, may have led to the discrepancies found in other reactions.Peer reviewe

    Odd p isotope 113In: Measurement of alpha-induced reactions

    Get PDF
    One of the few p nuclei with an odd number of protons is 113In. Reaction cross sections of 113In(alpha,gamma)117Sb and 113In(alpha,n)116Sb have been measured with the activation method at center-of-mass energies between 8.66 and 13.64 MeV, close to the astrophysically relevant energy range. The experiments were carried out at the cyclotron accelerator of ATOMKI. The activities were determined by off-line detection of the decay gamma rays with a HPGe detector. Measured cross sections and astrophysical S factor results are presented and compared with statistical model calculations using three different alpha+nucleus potentials. The comparison indicates that the standard rates used in the majority of network calculations for these reactions were too fast due to the energy dependence of the optical alpha potential at low energy.Comment: 9 pages, 9 figures, Accepted for publication in Phys. Rev. C. Minor changes mad
    corecore