823 research outputs found

    F100(3) parallel compressor computer code and user's manual

    Get PDF
    The Pratt & Whitney Aircraft multiple segment parallel compressor model has been modified to include the influence of variable compressor vane geometry on the sensitivity to circumferential flow distortion. Further, performance characteristics of the F100 (3) compression system have been incorporated into the model on a blade row basis. In this modified form, the distortion's circumferential location is referenced relative to the variable vane controlling sensors of the F100 (3) engine so that the proper solution can be obtained regardless of distortion orientation. This feature is particularly important for the analysis of inlet temperature distortion. Compatibility with fixed geometry compressor applications has been maintained in the model

    Nanosecond electro-optical switching with a repetition rate above 20MHz

    Full text link
    We describe an electro-optical switch based on a commercial electro-optic modulator (modified for high-speed operation) and a 340V pulser having a rise time of 2.2ns (at 250V). It can produce arbitrary pulse patterns with an average repetition rate beyond 20MHz. It uses a grounded-grid triode driven by transmitting power transistors. We discuss variations that enable analog operation, use the step-recovery effect in bipolar transistors, or offer other combinations of output voltage, size, and cost.Comment: 3 pages, 3 figures. Minor change

    Covering Pairs in Directed Acyclic Graphs

    Full text link
    The Minimum Path Cover problem on directed acyclic graphs (DAGs) is a classical problem that provides a clear and simple mathematical formulation for several applications in different areas and that has an efficient algorithmic solution. In this paper, we study the computational complexity of two constrained variants of Minimum Path Cover motivated by the recent introduction of next-generation sequencing technologies in bioinformatics. The first problem (MinPCRP), given a DAG and a set of pairs of vertices, asks for a minimum cardinality set of paths "covering" all the vertices such that both vertices of each pair belong to the same path. For this problem, we show that, while it is NP-hard to compute if there exists a solution consisting of at most three paths, it is possible to decide in polynomial time whether a solution consisting of at most two paths exists. The second problem (MaxRPSP), given a DAG and a set of pairs of vertices, asks for a path containing the maximum number of the given pairs of vertices. We show its NP-hardness and also its W[1]-hardness when parametrized by the number of covered pairs. On the positive side, we give a fixed-parameter algorithm when the parameter is the maximum overlapping degree, a natural parameter in the bioinformatics applications of the problem

    Electronic Correlation and Transport Properties of Nuclear Fuel Materials

    Full text link
    Actinide elements, such as uranium and plutonium, and their compounds are best known as nuclear materials. When engineering optimal fuel materials for nuclear power, important thermophysical properties to be considered are melting point and thermal conductivity. Understanding the physics underlying transport phenomena due to electrons and lattice vibrations in actinide systems is a crucial step toward the design of better fuels. Using first principle LDA+DMFT method, we conduct a systematic study on the correlated electronic structures and transport properties of select actinide carbides, nitrides, and oxides, many of which are nuclear fuel materials. We find that different mechanisms, electrons--electron and electron--phonon interactions, are responsible for the transport in the uranium nitride and carbide, the best two fuel materials due to their excellent thermophysical properties. Our findings allow us to make predictions on how to improve their thermal conductivities.Comment: Main article: 5 pages, 3 figures. Supplementary info: 2 pages, 1 figur

    ClassCut for Unsupervised Class Segmentation

    Get PDF
    Abstract. We propose a novel method for unsupervised class segmentation on a set of images. It alternates between segmenting object instances and learning a class model. The method is based on a segmentation energy defined over all images at the same time, which can be optimized efficiently by techniques used before in interactive segmentation. Over iterations, our method progressively learns a class model by integrating observations over all images. In addition to appearance, this model captures the location and shape of the class with respect to an automatically determined coordinate frame common across images. This frame allows us to build stronger shape and location models, similar to those used in object class detection. Our method is inspired by interactive segmentation methods [1], but it is fully automatic and learns models characteristic for the object class rather than specific to one particular object/image. We experimentally demonstrate on the Caltech4, Caltech101, and Weizmann horses datasets that our method (a) transfers class knowledge across images and this improves results compared to segmenting every image independently; (b) outperforms Grabcut [1] for the task of unsupervised segmentation; (c) offers competitive performance compared to the state-of-the-art in unsupervised segmentation and in particular it outperforms the topic model [2].

    The validation of a home food inventory

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Home food inventories provide an efficient method for assessing home food availability; however, few are validated. The present study's aim was to develop and validate a home food inventory that is easily completed by research participants in their homes and includes a comprehensive range of both healthful and less healthful foods that are associated with obesity.</p> <p>Methods</p> <p>A home food inventory (HFI) was developed and tested with two samples. Sample 1 included 51 adult participants and six trained research staff who independently completed the HFI in participants' homes. Sample 2 included 342 families in which parents completed the HFI and the Diet History Questionnaire (DHQ) and students completed three 24-hour dietary recall interviews. HFI items assessed 13 major food categories as well as two categories assessing ready-access to foods in the kitchen and the refrigerator. An obesogenic household food availability score was also created. To assess criterion validity, participants' and research staffs' assessment of home food availability were compared (staff = gold standard). Criterion validity was evaluated with kappa, sensitivity, and specificity. Construct validity was assessed with correlations of five HFI major food category scores with servings of the same foods and associated nutrients from the DHQ and dietary recalls.</p> <p>Results</p> <p>Kappa statistics for all 13 major food categories and the two ready-access categories ranged from 0.61 to 0.83, indicating substantial agreement. Sensitivity ranged from 0.69 to 0.89, and specificity ranged from 0.86 to 0.95. Spearman correlations between staff and participant major food category scores ranged from 0.71 to 0.97. Correlations between the HFI scores and food group servings and nutrients on the DHQ (parents) were all significant (p < .05) while about half of associations between the HFI and dietary recall interviews (adolescents) were significant (p < .05). The obesogenic home food availability score was significantly associated (p < .05) with energy intake of both parents and adolescents.</p> <p>Conclusion</p> <p>This new home food inventory is valid, participant-friendly, and may be useful for community-based behavioral nutrition and obesity prevention research. The inventory builds on previous measures by including a wide range of healthful and less healthful foods rather than foods targeted for a specific intervention.</p

    Labels direct infants’ attention to commonalities during novel category learning

    Get PDF
    Recent studies have provided evidence that labeling can influence the outcome of infants’ visual categorization. However, what exactly happens during learning remains unclear. Using eye-tracking, we examined infants’ attention to object parts during learning. Our analysis of looking behaviors during learning provide insights going beyond merely observing the learning outcome. Both labeling and non-labeling phrases facilitated category formation in 12-month-olds but not 8-month-olds (Experiment 1). Non-linguistic sounds did not produce this effect (Experiment 2). Detailed analyses of infants’ looking patterns during learning revealed that only infants who heard labels exhibited a rapid focus on the object part successive exemplars had in common. Although other linguistic stimuli may also be beneficial for learning, it is therefore concluded that labels have a unique impact on categorization
    • …
    corecore