180 research outputs found

    Vortex Creep Heating vs. Dark Matter Heating in Neutron Stars

    Full text link
    Dark matter particles captured in neutron stars deposit their energy as heat. This DM heating effect can be observed only if it dominates over other internal heating effects in NSs. In this work, as an example of such an internal heating source, we consider the frictional heating caused by the creep motion of neutron superfluid vortex lines in the NS crust. The luminosity of this heating effect is controlled by the strength of the interaction between the vortex lines and nuclei in the crust, which can be estimated from the many-body calculation of a high-density nuclear system as well as through the temperature observation of old NSs. We show that both the temperature observation and theoretical calculation suggest that the vortex creep heating dominates over the DM heating. The vortex-nuclei interaction must be smaller than the estimated values by several orders of magnitude to overturn this.Comment: 8 pages, 2 figure

    Comparison between the Cramer-Rao and the mini-max approaches in quantum channel estimation

    Full text link
    In a unified viewpoint in quantum channel estimation, we compare the Cramer-Rao and the mini-max approaches, which gives the Bayesian bound in the group covariant model. For this purpose, we introduce the local asymptotic mini-max bound, whose maximum is shown to be equal to the asymptotic limit of the mini-max bound. It is shown that the local asymptotic mini-max bound is strictly larger than the Cramer-Rao bound in the phase estimation case while the both bounds coincide when the minimum mean square error decreases with the order O(1/n). We also derive a sufficient condition for that the minimum mean square error decreases with the order O(1/n).Comment: In this revision, some unlcear parts are clarifie

    Charge-Density-Wave Formation in the Doped Two-Leg Extended Hubbard Ladder

    Full text link
    We investigate electronic properties of the doped two-leg Hubbard ladder with both the onsite and the nearest-neighbor Coulomb repulsions, by using the the weak-coupling renormalization-group method. It is shown that, for strong nearest-neighbor repulsions, the charge-density-wave state coexisting with the p-density-wave state becomes dominant fluctuation where spins form intrachain singlets. By increasing doping rate, we have also shown that the effects of the nearest-neighbor repulsions are reduced and the system exhibits a quantum phase transition into the d-wave-like (or rung-singlet) superconducting state. We derive the effective fermion theory which describes the critical properties of the transition point with the gapless excitation of magnon. The phase diagram of the two-leg ladder compound, Sr_{14-x}Ca_xCu_{24}O_{41}, is discussed.Comment: 4 pages, 2 figure

    Superconductivity of the Sr2Ca12Cu24O41Sr_2 Ca_{12} Cu_{24} O_{41} spin ladder system: Are the superconducting pairing and the spin-gap formation of the same origin?

    Full text link
    Pressure-induced superconductivity in a spin-ladder cuprate Sr2_2Ca12_{12}Cu24_{24}O41_{41} has not been studied on a microscopic level so far although the superconductivity was already discovered in 1996. We have improved high-pressure technique with using a large high-quality crystal, and succeeded in studying the superconductivity using 63^{63}Cu nuclear magnetic resonance (NMR). We found that anomalous metallic state reflecting the spin-ladder structure is realized and the superconductivity possesses a s-wavelike character in the meaning that a finite gap exists in the quasi-particle excitation: At pressure of 3.5GPa we observed two excitation modes in the normal state from the relaxation rate T11T_1^{-1}. One gives rise to an activation-type component in T11T_1^{-1}, and the other TT-linear component linking directly with the superconductivity. This gapless mode likely arises from free motion of holon-spinon bound states appearing by hole doping, and the pairing of them likely causes the superconductivity.Comment: to be published in Phys. Rev. Let

    Three-Dimensional Multiband d-p Model of Superconductivity in Spin-Chain Ladder Cuprate

    Full text link
    We study the superconductivity in the three-dimensional multiband d-p model, in which a Cu2_2O3_3-ladder layer and a CuO2_2-chain layer are alternately stacked, as a model of the superconducting spin-chain ladder cuprate. pzp_z-Wave-like triplet superconductivity is found to be the most stable, and its dependence on interlayer coupling can explain the superconducting transition temperature dependence on pressure in real superconducting spin-chain ladder cuprates. The superconductivity may be enhanced if hole transfer from the chain layer to the ladder layer can be promoted beyond the typical transfer rate.Comment: 16 pages, 8 figure

    Overexpression of SMYD2 in gastric cancer

    Get PDF
    Background: SET and MYND domain-containing protein 2 (SMYD2) is a lysine methyltransferase for histone H3, p53 and Rb and inhibits their transactivation activities. In this study, we tested whether SMYD2 (1q42) acts as a cancer-promoting factor by being overexpressed in gastric cancer. Methods: We analysed 7 gastric cancer cell lines and 147 primary tumor samples of gastric cancer, which were curatively resected in our hospital. Results: SET and MYND domain-containing protein 2 was detected in these cell lines (five out of seven cell lines; 71.4%) and primary tumor samples (fifty-six out of one hundred and forty-seven cases; 38.1%). Knockdown of SMYD2 using specific small interfering RNA inhibited proliferation, migration and invasion of SMYD2-overexpressing cells in a TP53 mutation-independent manner. Overexpression of SMYD2 protein correlated with larger tumor size, more aggressive lymphatic invasion, deeper tumor invasion and higher rates of lymph node metastasis and recurrence. Patients with SMYD2-overexpressing tumours had a worse overall rate of survival than those with non-expressing tumours (P=0.0073, log-rank test) in an intensity and proportion score-dependent manner. Moreover, multivariate analysis demonstrated that SMYD2 was independently associated with worse outcome (P=0.0021, hazard ratio 4.25 (1.69–10.7)). Conclusions: These findings suggest that SMYD2 has a crucial role in tumor cell proliferation by its overexpression and highlight its usefulness as a prognostic factor and potential therapeutic target in gastric cancer

    Synthesis, Characterization and Magnetic Susceptibility of the Heavy Fermion Transition Metal Oxide LiV_{2}O_{4}

    Full text link
    The preparative method, characterization and magnetic susceptibility \chi measurements versus temperature T of the heavy fermion transition metal oxide LiV_{2}O_{4} are reported in detail. The intrinsic \chi(T) shows a nearly T-independent behavior below ~ 30 K with a shallow broad maximum at about 16 K, whereas Curie-Weiss-like behavior is observed above 50-100 K. Field-cooled and zero-field-cooled magnetization M measurements in applied magnetic fields H = 10 to 100 G from 1.8 to 50 K showed no evidence for spin-glass ordering. Crystalline electric field theory for an assumed cubic V point group symmetry is found insufficient to describe the observed temperature variation of the effective magnetic moment. The Kondo and Coqblin-Schrieffer models do not describe the magnitude and T dependence of \chi with realistic parameters. In the high T range, fits of \chi(T) by the predictions of high temperature series expansion calculations provide estimates of the V-V antiferromagnetic exchange coupling constant J/k_{B} ~ 20 K, g-factor g ~ 2 and the T-independent susceptibility. Other possible models to describe the \chi(T) are discussed. The paramagnetic impurities in the samples were characterized using isothermal M(H) measurements with 0 < H <= 5.5 Tesla at 2 to 6 K. These impurities are inferred to have spin S_{imp} ~ 3/2 to 4, g_{imp} ~ 2 and molar concentrations of 0.01 to 0.8 %, depending on the sample.Comment: 19 typeset RevTeX pages, 16 eps figures included, uses epsf; to be published in Phys. Rev.

    Measurement of high-p_T Single Electrons from Heavy-Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV

    Get PDF
    The momentum distribution of electrons from decays of heavy flavor (charm and beauty) for midrapidity |y| < 0.35 in p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) over the transverse momentum range 0.3 < p_T < 9 GeV/c. Two independent methods have been used to determine the heavy flavor yields, and the results are in good agreement with each other. A fixed-order-plus-next-to-leading-log pQCD calculation agrees with the data within the theoretical and experimental uncertainties, with the data/theory ratio of 1.72 +/- 0.02^stat +/- 0.19^sys for 0.3 < p_T < 9 GeV/c. The total charm production cross section at this energy has also been deduced to be sigma_(c c^bar) = 567 +/- 57^stat +/- 224^sys micro barns.Comment: 375 authors from 57 institutions, 6 pages, 3 figures. Submitted to Physical Review Letters. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore