8,172 research outputs found

    Case of Almost Redundant Components in 3 alpha Faddeev Equations

    Get PDF
    The 3 alpha orthogonality condition model using the Pauli-forbidden bound states of the Buck, Friedlich and Wheatly alpha alpha potential can yield a compact 3 alpha ground state with a large binding energy, in which a small admixture of the redundant components can never be eliminated.Comment: Revtex V4.0, 4 pages, no figure

    Comparison between the Cramer-Rao and the mini-max approaches in quantum channel estimation

    Full text link
    In a unified viewpoint in quantum channel estimation, we compare the Cramer-Rao and the mini-max approaches, which gives the Bayesian bound in the group covariant model. For this purpose, we introduce the local asymptotic mini-max bound, whose maximum is shown to be equal to the asymptotic limit of the mini-max bound. It is shown that the local asymptotic mini-max bound is strictly larger than the Cramer-Rao bound in the phase estimation case while the both bounds coincide when the minimum mean square error decreases with the order O(1/n). We also derive a sufficient condition for that the minimum mean square error decreases with the order O(1/n).Comment: In this revision, some unlcear parts are clarifie

    Gauge Equivalence in Two--Dimensional Gravity

    Full text link
    Two-dimensional quantum gravity is identified as a second-class system which we convert into a first-class system via the Batalin-Fradkin (BF) procedure. Using the extended phase space method, we then formulate the theory in most general class of gauges. The conformal gauge action suggested by David, Distler and Kawai is derived from a first principle. We find a local, light-cone gauge action whose Becchi-Rouet-Stora-Tyutin invariance implies Polyakov's curvature equation R=3g++=0\partial_{-}R=\partial_{-}^{3}g_{++}=0, revealing the origin of the SL(2,R)SL(2,R) Kac-Moody symmetry. The BF degree of freedom turns out be dynamically active as the Liouville mode in the conformal gauge, while in the light-cone gauge the conformal degree of freedom plays that r{\^o}le. The inclusion of the cosmological constant term in both gauges and the harmonic gauge-fixing are also considered.Comment: 30 pages, KANAZAWA 93-

    A Realistic Description of Nucleon-Nucleon and Hyperon-Nucleon Interactions in the SU_6 Quark Model

    Get PDF
    We upgrade a SU_6 quark-model description for the nucleon-nucleon and hyperon-nucleon interactions by improving the effective meson-exchange potentials acting between quarks. For the scalar- and vector-meson exchanges, the momentum-dependent higher-order term is incorporated to reduce the attractive effect of the central interaction at higher energies. The single-particle potentials of the nucleon and Lambda, predicted by the G-matrix calculation, now have proper repulsive behavior in the momentum region q_1=5 - 20 fm^-1. A moderate contribution of the spin-orbit interaction from the scalar-meson exchange is also included. As to the vector mesons, a dominant contribution is the quadratic spin-orbit force generated from the rho-meson exchange. The nucleon-nucleon phase shifts at the non-relativistic energies up to T_lab=350 MeV are greatly improved especially for the 3E states. The low-energy observables of the nucleon-nucleon and the hyperon-nucleon interactions are also reexamined. The isospin symmetry breaking and the Coulomb effect are properly incorporated in the particle basis. The essential feature of the Lambda N - Sigma N coupling is qualitatively similar to that obtained from the previous models. The nuclear saturation properties and the single-particle potentials of the nucleon, Lambda and Sigma are reexamined through the G-matrix calculation. The single-particle potential of the Sigma hyperon is weakly repulsive in symmetric nuclear matter. The single-particle spin-orbit strength for the Lambda particle is very small, in comparison with that of the nucleons, due to the strong antisymmetric spin-orbit force generated from the Fermi-Breit interaction.Comment: Revtex v2.09, 69 pages with 25 figure

    Spiky density of states in large complex Al-Mn phases

    Full text link
    First-principle electronic structure calculations have been performed in crystalline complex phases mu-Al4Mn and lambda-Al4Mn using the TB-LMTO method. These atomic structures, related to quasicrystalline structures, contain about 560 atoms in a large hexagonal unit cell. One of the main characteristic of their density of states is the presence of fine peaks the so-called "spiky structure". From multiple-scattering calculations in real space, we show that these fine peaks are not artifacts in ab-initio calculations, since they result from a specific localization of electrons by atomic clusters of different length scales

    Magnetic properties of Fe/Dy multilayers: a Monte Carlo investigation

    Full text link
    We investigate the magnetic properties of a Heisenberg ferrimagnetic multilayer by using Monte Carlo simulations. The aim of this work is to study the local structural anisotropy model which is a possible origin of the perpendicular magnetic anisotropy in transition metal/rare earth amorphous multilayers. We have considered a face centered cubic lattice where each site is occupied by a classical Heisenberg spin. We have introduced in our model of amorphous multilayers a small fraction of crystallized Fe-Dy nanoclusters with a mean anisotropy axis along the deposition direction. We show that a competition in the energy terms takes place between the mean uniaxial anisotropy of the Dy atoms in the nanoclusters and the random anisotropy of the Dy atoms in the matrix.Comment: accepte pour publication - Proceeding of the Joint European Magnetic Symposia (JEMS 06) - Journal of Magnetism and Magnetic Material

    Analysis of a convenient information bound for general quantum channels

    Full text link
    Open questions from Sarovar and Milburn (2006 J.Phys. A: Math. Gen. 39 8487) are answered. Sarovar and Milburn derived a convenient upper bound for the Fisher information of a one-parameter quantum channel. They showed that for quasi-classical models their bound is achievable and they gave a necessary and sufficient condition for positive operator-valued measures (POVMs) attaining this bound. They asked (i) whether their bound is attainable more generally, (ii) whether explicit expressions for optimal POVMs can be derived from the attainability condition. We show that the symmetric logarithmic derivative (SLD) quantum information is less than or equal to the SM bound, i.e.\ H(θ)CΥ(θ)H(\theta) \leq C_{\Upsilon}(\theta) and we find conditions for equality. As the Fisher information is less than or equal to the SLD quantum information, i.e. FM(θ)H(θ)F_M(\theta) \leq H(\theta), we can deduce when equality holds in FM(θ)CΥ(θ)F_M(\theta) \leq C_{\Upsilon}(\theta). Equality does not hold for all channels. As a consequence, the attainability condition cannot be used to test for optimal POVMs for all channels. These results are extended to multi-parameter channels.Comment: 16 pages. Published version. Some of the lemmas have been corrected. New resuts have been added. Proofs are more rigorou
    corecore