174 research outputs found

    Registration of the Chickpea Germplasm PHREC-Ca-Comp. #1 with Enhanced Resistance to Ascochyta Blight

    Get PDF
    The chickpea or garbanzo bean (Cicer arietinum L.) germplasm PHREC-Ca-Comp. #1 (Reg. No. GP-282, PI 659664) was developed by the former Alternative Crops Breeding Program at the University of Nebraska Agricultural Research Division and was released in 2010. It was bred specifically for adaptation to growing conditions in Nebraska and for enhanced resistance to Ascochyta blight, a major disease of chickpea caused by Ascochyta rabiei (Pass.) Labr. PHREC-Ca- Comp. #1 is a composite of PI 315797, PI 343014, PI 379217, PI 471915, PI 598080, and W6 17256. The composite was developed in the fall of 2002 and was evaluated in six irrigated and four dryland environments at Scottsbluff, Sidney, and Alliance, NE, from 2004 to 2009. Across irrigated environments, PHREC-Ca-Comp. #1 had the lowest severity rating for Ascochyta blight and a higher yield under both irrigated and dryland conditions than ‘Sierra’, ‘Dwelley’, ‘Dylan’, and ‘Troy’. PHREC-Ca-Comp. #1 is a small, round, cream-colored kabuli-type chickpea. It exhibits an upright, indeterminate growth habit. Plants average 66 cm in height and have excellent resistance to lodging. PHREC-Ca-Comp. #1 has a fern leaf structure and white flowers and blooms 44 d after planting. It is a midseason bean, maturing 116 d after planting. Although its seed size does not meet commercial standards, PHREC-Ca-Comp. #1 has value in breeding programs as a source of resistance to Ascochyta blight and because of its high yield potential

    Human GBP1 is a microbe-specific gatekeeper of macrophage apoptosis and pyroptosis

    Get PDF
    The guanylate binding protein (GBP) family of interferon-inducible GTPases promotes antimicrobial immunity and cell death. During bacterial infection, multiple mouse Gbps, human GBP2, and GBP5 support the activation of caspase-1-containing inflammasome complexes or caspase-4 which trigger pyroptosis. Whether GBPs regulate other forms of cell death is not known. The apicomplexan parasite Toxoplasma gondii causes macrophage death through unidentified mechanisms. Here we report that Toxoplasma-induced death of human macrophages requires GBP1 and its ability to target Toxoplasma parasitophorous vacuoles through its GTPase activity and prenylation. Mechanistically, GBP1 promoted Toxoplasma detection by AIM2, which induced GSDMD-independent, ASC-, and caspase-8-dependent apoptosis. Identical molecular determinants targeted GBP1 to Salmonella-containing vacuoles. GBP1 facilitated caspase-4 recruitment to Salmonella leading to its enhanced activation and pyroptosis. Notably, GBP1 could be bypassed by the delivery of Toxoplasma DNA or bacterial LPS into the cytosol, pointing to its role in liberating microbial molecules. GBP1 thus acts as a gatekeeper of cell death pathways, which respond specifically to infecting microbes. Our findings expand the immune roles of human GBPs in regulating not only pyroptosis, but also apoptosis

    Human GBP1 does not localize to pathogen vacuoles but restricts Toxoplasma gondii

    Get PDF
    Guanylate binding proteins (GBPs) are a family of large interferon‐inducible GTPases that are transcriptionally upregulated upon infection with intracellular pathogens. Murine GBPs (mGBPs) including mGBP1 and 2 localize to and disrupt pathogen‐containing vacuoles (PVs) resulting in the cell‐autonomous clearing or innate immune detection of PV‐resident pathogens. Human GBPs (hGBPs) are known to exert antiviral host defense and activate the NLRP3 inflammasome, but it is unclear whether hGBPs can directly recognize and control intravacuolar pathogens. Here, we report that endogenous or ectopically expressed hGBP1 fails to associate with PVs formed in human cells by the bacterial pathogens Chlamydia trachomatis or Salmonella typhimurium or the protozoan pathogen Toxoplasma gondii. While we find that hGBP1 expression has no discernible effect on intracellular replication of C. trachomatis and S. typhimurium, we observed enhanced early Toxoplasma replication in CRISPR hGBP1‐deleted human epithelial cells. We thus identified a novel role for hGBP1 in cell‐autonomous immunity that is independent of PV translocation, as observed for mGBPs. This study highlights fundamental differences between human and murine GBPs and underlines the need to study the functions of GBPs at cellular locations away from PVs

    UV-induced ligand exchange in MHC class I protein crystals

    Get PDF
    High-throughput structure determination of protein−ligand complexes is central in drug development and structural proteomics. To facilitate such high-throughput structure determination we designed an induced replacement strategy. Crystals of a protein complex bound to a photosensitive ligand are exposed to UV light, inducing the departure of the bound ligand, allowing a new ligand to soak in. We exemplify the approach for a class of protein complexes that is especially recalcitrant to high-throughput strategies: the MHC class I proteins. We developed a UV-sensitive, “conditional”, peptide ligand whose UV-induced cleavage in the crystals leads to the exchange of the low-affinity lytic fragments for full-length peptides introduced in the crystallant solution. This “in crystallo” exchange is monitored by the loss of seleno-methionine anomalous diffraction signal of the conditional peptide compared to the signal of labeled MHC β2m subunit. This method has the potential to facilitate high-throughput crystallography in various protein families

    Class I major histocompatibility complexes loaded by a periodate trigger

    Get PDF
    Class I major histocompatibility complexes (MHCs) present peptide ligands on the cell surface for recognition by appropriate cytotoxic T cells. The unstable nature of unliganded MHC necessitates the production of recombinant class I complexes through in vitro refolding reactions in the presence of an added excess of peptides. This strategy is not amenable to high-throughput production of vast collections of class I complexes. To address this issue, we recently designed photocaged MHC ligands that can be cleaved by a UV light trigger in the MHC bound state under conditions that do not affect the integrity of the MHC structure. The results obtained with photocaged MHC ligands demonstrate that conditional MHC ligands can form a generally applicable concept for the creation of defined peptide−MHCs. However, the use of UV exposure to mediate ligand exchange is unsuited for a number of applications, due to the lack of UV penetration through cell culture systems and due to the transfer of heat upon UV irradiation, which can induce evaporation. To overcome these limitations, here, we provide proof-of-concept for the generation of defined peptide−MHCs by chemical trigger-induced ligand exchange. The crystal structure of the MHC with the novel chemosensitive ligand showcases that the ligand occupies the expected binding site, in a conformation where the hydroxyl groups should be reactive to periodate. We proceed to validate this technology by producing peptide−MHCs that can be used for T cell detection. The methodology that we describe here should allow loading of MHCs with defined peptides in cell culture devices, thereby permitting antigen-specific T cell expansion and purification for cell therapy. In addition, this technology will be useful to develop miniaturized assay systems for performing high-throughput screens for natural and unnatural MHC ligands

    Researching underwater: a submerged study

    Get PDF
    This chapter explores the unknown territory of a lost project: an ethnography of a public swimming pool. The discussion is contextualised within my broader sociological theory of ‘nothing’, as a category of unmarked, negative social phenomena, including no-things, no-bodies, no-wheres, non-events and non-identities. These meaningful symbolic objects are constituted through social interaction, which can take two forms: acts of commission and acts of omission. I tell the story of how this project did not happen, through the things I did not do or that did not materialise, and how I consequently did not become a certain type of researcher. I identify three types of negative phenomena that I did not observe and document – invisible figures, silent voices and empty vessels – and, consequently, the knowledge I did not acquire. However, nothing is also productive, generating new symbolic objects as substitutes, alternatives and replacements: the somethings, somebodies and somewheres that are done or made instead. Thus finally, I reflect on how not doing this project led me to pursue others, cultivating a different research identity that would not otherwise have existed

    Cellular barcoding of protozoan pathogens reveals the within-host population dynamics of Toxoplasma gondii host colonization

    Get PDF
    Cellular barcoding techniques are powerful tools to understand microbial pathogenesis. However, barcoding strategies have not been broadly applied to protozoan parasites, which have unique genomic structures and virulence strategies compared with viral and bacterial pathogens. Here, we present a CRISPR-based method to barcode protozoa, which we successfully apply to Toxoplasma gondii and Trypanosoma brucei. Using libraries of barcoded T. gondii, we evaluate shifts in the population structure from acute to chronic infection of mice. Contrary to expectation, most barcodes were present in the brain one month post-intraperitoneal infection in both inbred CBA/J and outbred Swiss mice. Although parasite cyst number and barcode diversity declined over time, barcodes representing a minor fraction of the inoculum could become a dominant population in the brain by three months post-infection. These data establish a cellular barcoding approach for protozoa and evidence that the blood-brain barrier is not a major bottleneck to colonization by T. gondii

    Characterisation of the Trichinella spiralis deubiquitinating enzyme, TsUCH37, an evolutionarily conserved proteasome interaction partner.

    Get PDF
    Trichinella spiralis is a parasitic nematode that infects mammals indiscriminately. Although the biggest impact of trichinellosis is observed in developing countries, the parasite is found on all continents except Antarctica. In humans, Trichinella infection contributes globally to helminth related morbidity and disability adjusted life years. In animals, infection is implicated as a serious agricultural problem and drug treatment is largely ineffective. During chronic infection, larvae invade skeletal muscle cells, forming a nurse cell complex in which they become encysted. The nurse cell is a product of the severe disruption of the host cell homeostasis. Proteins of the Ub/proteasome pathway are highly conserved throughout evolution, and considering their importance in the regulation of cell homeostasis, provide interesting and novel therapeutic targets for various diseases. In order to target this system in parasites, pathogen proteins that play a role in this pathway must be identified. We report the identification of the first T. spiralis deubiquitinating enzyme, and show evidence that the function of this protein as a proteasome interaction partner has been evolutionarily conserved. We show that members of this enzyme family are important for T. spiralis survival and that the use of inhibitor compounds may help elucidate their role in infection
    corecore