883 research outputs found

    Anatomical Modularity of Verbal Working Memory? Functional Anatomical Evidence from a Famous Patient with Short-Term Memory Deficits.

    Get PDF
    Cognitive skills are the emergent property of distributed neural networks. The distributed nature of these networks does not necessarily imply a lack of specialization of the individual brain structures involved. However, it remains questionable whether discrete aspects of high-level behavior might be the result of localized brain activity of individual nodes within such networks. The phonological loop of working memory, with its simplicity, seems ideally suited for testing this possibility. Central to the development of the phonological loop model has been the description of patients with focal lesions and specific deficits. As much as the detailed description of their behavior has served to refine the phonological loop model, a classical anatomoclinical correlation approach with such cases falls short in telling whether the observed behavior is based on the functions of a neural system resembling that seen in normal subjects challenged with phonological loop tasks or whether different systems have taken over. This is a crucial issue for the cross correlation of normal cognition, normal physiology, and cognitive neuropsychology. Here we describe the functional anatomical patterns of JB, a historical patient originally described by Warrington et al. (1971), a patient with a left temporo-parietal lesion and selective short phonological store deficit. JB was studied with the H2(15)O PET activation technique during a rhyming task, which primarily depends on the rehearsal system of the phonological loop. No residual function was observed in the left temporo-parietal junction, a region previously associated with the phonological buffer of working memory. However, Broca's area, the major counterpart of the rehearsal system, was the major site of activation during the rhyming task. Specific and autonomous activation of Broca's area in the absence of afferent inputs from the other major anatomical component of the phonological loop shows that a certain degree of functional independence or modularity exists in this distributed anatomical-cognitive system

    PHYCOBILISOMES AND ISOLATED PHYCOBILIPROTEINS. EFFECT OF GLUTARDIALDEHYDE AND BENZOQUINONE ON FLUORESCENCE

    Get PDF
    The fluorescence of the biliproteins C-phycocyanin from Spirulina platensis, B-phycoerythrin from Porphyridium cruentum and of isolated whole P. cruentum phycobilisomes is quenched in the presence of glutardialdehyde (GA) or benzoquinone (BQ). The kinetics of fluorescence decrease thus induced is biphasic. If GA is used as a quencher, the fluorescence can be recovered at 77 K. Contrary to the GA-effect, only a minor recovery takes place with BQ at 77K, thus demonstrating a different mechanism of action of GA and BQ on biliprotein

    How the brain learns to see objects and faces in an impoverished context

    Get PDF

    Extent of Pseudocapacitance in High‐Surface Area Vanadium Nitrides

    Full text link
    Early transition‐metal nitrides, especially vanadium nitride (VN), have shown promise for use in high energy density supercapacitors due to their high electronic conductivity, areal specific capacitance, and ability to be synthesized in high surface area form. Their further development would benefit from an understanding of their pseudocapacitive charge storage mechanism. In this paper, the extent of pseudocapacitance exhibited by vanadium nitride in aqueous electrolytes was investigated using cyclic voltammetry and electrochemical impedance spectroscopy. The pseudocapacitance contribution to the total capacitance in the nitride material was much higher than the double‐layer capacitance and ranged from 85 % in basic electrolyte to 87 % in acidic electrolyte. The mole of electrons transferred per VN material during pseudocapacitive charge storage was also evaluated. This pseudocapacitive charge‐storage is the key component in the full utilization of the properties of early‐transition metal nitrides for high‐energy density supercapacitors.Double‐layer capacitance vs. pseudocapacitance: the electrostatic double‐layer and pseudocapacitive charge storage mechanisms in high‐surface‐area vanadium nitride are investigated. The magnitude of the pseudocapacitive charge storage capacity and mole of electrons transferred are reported. The pseudocapacitive charge‐storage mechanism is the key component in maximizing the energy density of supercapacitors based on transition‐metal nitrides.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146597/1/batt201800050.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146597/2/batt201800050_am.pd

    Men With a Terminal Illness Relax Their Criteria for Facial Attractiveness

    Get PDF
    According to the life history paradigm, in life-threatening conditions, sexual selection criteria are relaxed in order to increase the probability of a last resort reproduction, ultimately contributing to reproductive success. This should be reflected in loosened mating preferences — a process observed in nonhuman animals. Studies investigating this aspect in humans, however, are scarce. This study explored the aesthetic preferences towards facial and nonfacial stimuli in terminally ill patients with heart failure (HF) and their healthy, same-sex peers. The aim was to examine if these two groups of men demonstrate different patterns of aesthetic judgments. Using a 7-point scale, 65 male patients with HF and 143 healthy men evaluated the perceived attractiveness of 15 photographs (five adult male faces, five adult female faces, and five nonfacial pictures). A mixed-design analysis of variance was run to assess group differences in aesthetic preferences. Compared to healthy controls, stimuli. HF patients rated the pictures using significantly higher scores, but this applied only to male and female, but not nonfacial, stimuli. We propose that lower criteria for facial attractiveness in HF patients are linked to relaxation of mate preferences as a result of a life-threatening conditions, and that this process can be an adaptive mating strategy from an ultimate, evolutionary perspective. However, other mechanisms (e.g., seeking social support) may be also responsible for the observed patterns

    Multispectral brain morphometry in Tourette syndrome persisting into adulthood

    Get PDF
    Tourette syndrome is a childhood-onset neuropsychiatric disorder with a high prevalence of attention deficit hyperactivity and obsessive-compulsive disorder co-morbidities. Structural changes have been found in frontal cortex and striatum in children and adolescents. A limited number of morphometric studies in Tourette syndrome persisting into adulthood suggest ongoing structural alterations affecting frontostriatal circuits. Using cortical thickness estimation and voxel-based analysis of T1- and diffusion-weighted structural magnetic resonance images, we examined 40 adults with Tourette syndrome in comparison with 40 age- and gender-matched healthy controls. Patients with Tourette syndrome showed relative grey matter volume reduction in orbitofrontal, anterior cingulate and ventrolateral prefrontal cortices bilaterally. Cortical thinning extended into the limbic mesial temporal lobe. The grey matter changes were modulated additionally by the presence of co-morbidities and symptom severity. Prefrontal cortical thickness reduction correlated negatively with tic severity, while volume increase in primary somatosensory cortex depended on the intensity of premonitory sensations. Orbitofrontal cortex volume changes were further associated with abnormal water diffusivity within grey matter. White matter analysis revealed changes in fibre coherence in patients with Tourette syndrome within anterior parts of the corpus callosum. The severity of motor tics and premonitory urges had an impact on the integrity of tracts corresponding to cortico-cortical and cortico-subcortical connections. Our results provide empirical support for a patho-aetiological model of Tourette syndrome based on developmental abnormalities, with perturbation of compensatory systems marking persistence of symptoms into adulthood. We interpret the symptom severity related grey matter volume increase in distinct functional brain areas as evidence of ongoing structural plasticity. The convergence of evidence from volume and water diffusivity imaging strengthens the validity of our findings and attests to the value of a novel multimodal combination of volume and cortical thickness estimations that provides unique and complementary information by exploiting their differential sensitivity to structural chang

    THERMAL DENATURATION OF MONOMERIC AND TRIMERIC PHYCOCYANINS STUDIED BY STATIC AND SPECTROSCOPY POLARIZED TIME-RESOLVED FLUORESCENCE

    Get PDF
    C-Phycocyanin (PC) and allophycocyanin (APC). as well as the a-subunit of PC. have been isolated from the blue-green alga (cyanobacterium). Spirulina platensis. The effects of partial thermal denaturation of PC and of its state of aggregation have been studied by ps time-resolved, polarized fluorescence spectroscopy. All measurements have been performed under low photon fluxes (< 10’ ’ photonsipulse x cm’) to minimize singlet-singlet annihilation processes. A complex decay is obtained under most conditions, which can be fitted satisfactorily with a bi-exponential (7’ = 70400 ps. T? = 1000-3000 ps) for both the isotropic and the polarized part, but with different intensities and time constants for the two decay curves. The data are interpreted in the frameworkof the model first developed by Teak and Dale (Biochern. J. 116, 161 (1970)], which divides the spectroscopically different chromophores in (predominantly) sensitizing (s) and fluorescing U, ones. If one assumes temperature dependent losses in the energy transfer from the s to the f and between f chromophores. both the biexponential nature of the isotropic fluorescence decay and the polarization data can be rationalized. In the isotropic emission (corresponding to the population of excited states) the short lifetime is related to the s-,f transfer. the longer one to the “free“ decay of the final acceptor(s) (= f). The polarized part is dominated by an extremely short decay time. which is related to s+f transfer, as well as to resonance transfer between the f-chromophores
    corecore