55 research outputs found

    Analysis of the Stability of Openings Excavated in Anisotropic Rocks

    Get PDF
    Openings excavated in rocks with anisotropic strength are often affected by serious instability, related to slip along the weakness planes. The Jaeger criterion, which is a discontinuous approach, is widely used in the mining and oil and gas industry, because is based on well-known rock strength parameters. However, this model cannot capture features related to the stability of openings drilled in some anisotropic rocks with the combined effect of the in situ state of stress. The Hoek & Brown criterion, adapted to anisotropic rocks, is a continuous criterion that can describe the complex behavior of different types of anisotropy exhibited by rock material. Here we interpreted the results of triaxial tests carried out on a shale and we defined the parameters of the Jaeger criterion and the modified Hoek & Brown criterion. We investigated the stability of boreholes drilled in this shale by varying the in situ state of stress and we compared the results of the two criteria. We found that the Hoek & Brown criterion can appropriately describe the behavior of this shale and can predict more accurately the width of the instability of openings excavated in different conditions

    The role of rock joint frictional strength in the containment of fracture propagation

    Get PDF
    The fracturing phenomenon within the reservoir environment is a complex process that is controlled by several factors and may occur either naturally or by artificial drivers. Even when deliberately induced, the fracturing behaviour is greatly influenced by the subsurface architecture and existing features. The presence of discontinuities such as joints, artificial and naturally occurring faults and interfaces between rock layers and microfractures plays an important role in the fracturing process and has been known to significantly alter the course of fracture growth. In this paper, an important property (joint friction) that governs the shear behaviour of discontinuities is considered. The applied numerical procedure entails the implementation of the discrete element method to enable a more dynamic monitoring of the fracturing process, where the joint frictional property is considered in isolation. Whereas fracture propagation is constrained by joints of low frictional resistance, in non-frictional joints, the unrestricted sliding of the joint plane increases the tendency for reinitiation and proliferation of fractures at other locations. The ability of a frictional joint to suppress fracture growth decreases as the frictional resistance increases; however, this phenomenon exacerbates the influence of other factors including in situ stresses and overburden conditions. The effect of the joint frictional property is not limited to the strength of rock formations; it also impacts on fracturing processes, which could be particularly evident in jointed rock masses or formations with prominent faults and/or discontinuities

    Pore Volume and Porosity Changes under Uniaxial Strain Conditions

    Get PDF
    Expressions for the changes that occur in the pore volume and the porosity of a porous rock, due to changes in the pore pressure, overburden stress, and temperature, are derived within the context of the linearised theory of poroelasticity. The resulting expressions are compared to the commonly used equations proposed by Palmer and Mansoori, and it is shown that their expressions are consistent with the exact expressions if their factor f is identified with (1+ν)/3(1−ν)(1+ν)/3(1−ν) , where νν is the Poisson’s ratio of the porous rock. Finally, the first derivation is given, within the context of the fully coupled linearised theory of poroelasticity, that under uniaxial strain, the partial differential equation that governs the evolution of the pore pressure is a pure diffusion equation, with a total compressibility term that (exactly) equals the sum of the fluid compressibility and the uniaxial pore volume compressibility

    Thermal effective stress in shales

    No full text

    A damage model for fracking

    No full text
    • …
    corecore