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Abstract Expressions for the changes that occur in the pore volume and the porosity of
a porous rock, due to changes in the pore pressure, overburden stress, and temperature, are
derivedwithin the context of the linearised theory of poroelasticity. The resulting expressions
are compared to the commonly used equations proposed by Palmer and Mansoori, and it is
shown that their expressions are consistent with the exact expressions if their factor f is
identified with (1 + ν)/3(1 − ν), where ν is the Poisson’s ratio of the porous rock. Finally,
the first derivation is given, within the context of the fully coupled linearised theory of
poroelasticity, that under uniaxial strain, the partial differential equation that governs the
evolution of the pore pressure is a pure diffusion equation, with a total compressibility
term that (exactly) equals the sum of the fluid compressibility and the uniaxial pore volume
compressibility.

Keywords Poroelasticity · Porosity · Uniaxial strain · Coalbed methane · Palmer–Mansoori
equation

List of symbols

B Skempton’s induced pore pressure coefficient, Eq. (28)
Cbc Bulk compressibility with respect to confining pressure, Eq. (1) (1/Pa)
Cbp Bulk compressibility with respect to pore pressure, Eq. (1) (1/Pa)
Cf Compressibility of the pore fluid (1/Pa)
Cm Mineral phase compressibility (1/Pa)
Cpc Pore compressibility with respect to confining pressure, Eq. (2) (1/Pa)
Cpp Pore compressibility with respect to pore pressure, Eq. (2) (1/Pa)
Cuni
pp Uniaxial pore volume compressibility, Eq. (43) (1/Pa)
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D Hydraulic diffusivity, = k / φμCf (m2/s)
f Coefficient in Palmer–Mansoori equation, Eq. (61)
G Shear modulus of the porous rock (Pa)
I 3×3 identity tensor
K Bulk modulus of the porous rock (Pa)
m Mass of pore fluid in a given region (kg)
M Biot modulus of the porous rock, Eq. (31) (Pa)
Pp Pore fluid pressure (Pa)
Pc Confining pressure, defined as the hydrostatic part of the stress tensor (Pa)
q Fluid flux vector (m/s)
Vb Bulk volume (m3)
Vm Matrix/mineral volume, = Vb − Vp (m3)
Vp Pore volume (m3)
α Biot coefficient, Eq. (15)
β Linear thermal expansion coefficient of the porous rock (1/K)
εi j Components of strain tensor
εb Bulk volume strain, Eq. (3)
εp Pore volume strain, Eq. (4)
φ Porosity, = Vp / Vb
λ Lamé parameter (Pa)
μ Fluid viscosity (Pa s)
ν Poisson ratio of the porous rock
ρf Fluid density (kg/m3)
σi j Components of stress tensor (Pa)
θ Temperature increment (K)
ζ Volume of pore fluid contained in a given macroscopic region of rock

1 Introduction

When fluid is produced from a reservoir, it is generally assumed that the reservoir deforms
under conditions of zero lateral strain (Fjaer et al. 2008). Under conditions of uniaxial vertical
strain, changes in parameters such as the pore volume and the porosity will be functions of the
changes in vertical overburden stress, pore pressure, and temperature. If these latter changes
are suitably small, material parameters such as the elastic moduli and thermal expansion
coefficient can be considered to be constant, and the changes in pore volume or porosity
will be linearly related to the changes in overburden stress, pore pressure, and temperature,
through some coupling coefficients. If these changes are not small, the resulting linearised
relations can be considered to be incremental relations, that hold over a certain range, and the
coupling coefficients can then be allowed to vary with stress and temperature, if necessary.

The coefficient that relates the changes in pore volume to the change in pore fluid pressure
is required as an input for material balance calculations (Chierici 1994). The coefficient that
relates the changes in porosity to the change in pore fluid pressure is required in models
that relate the porosity changes to permeability changes (Seidle et al. 1992). This compress-
ibility coefficient is also used in the pressure diffusion equation that forms the basis of well
test analysis (Matthews and Russell 1967). Despite the importance of these uniaxial strain
pore/porosity compressibility coefficients in reservoir engineering, they have not often been
studied rigorously within the context of the coupled theory of poroelasticity.
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The purpose of the present paper is to derive expressions for these uniaxial strain
pore/porosity compressibility coefficients, in terms of the more naturally defined (and more
readily measured) parameters such as the Poisson ratio and the hydrostatic pore volume
compressibility. Additionally, it will be shown that under conditions of uniaxial strain, the
hydromechanically coupled partial differential equation that governs the pore pressure evo-
lution reduces (exactly) to a pure diffusion equation, with an effective total compressibility
that is equal to the sum of the fluid compressibility and the uniaxial pore volume compress-
ibility. Although this latter result is perhaps not unexpected, it does not appear to have been
previously proven. Furthermore, the present derivation will show that this result is exact,
within the context of coupled poroelasticity.

2 General Theory of Linearised Isotropic Poroelasticity

The theory that accounts for coupled hydromechanical behaviour of fluid-saturated porous
rocks is known as poroelasticity. This theory was originated independently by Biot (1941)
and Frenkel (1944), and developed further by, among others, Verruijt (1969), Rice and Cleary
(1976), and Detournay and Cheng (1993). Although numerous derivations of the equations
of linearised poroelasticity have been given, the resulting theories are all essentially equiv-
alent. The only possibly variance between the different formulations relates to whether or
not the assumption is made that the solid phase is composed of a single material with locally
homogenous properties. This commonly made assumption of micro-homogeneity (Zimmer-
man 1991), which Cheng (2016) refers to as the “ideal porous medium” assumption, leads to
the simplest version of the theory of linearised poroelasticity and will be assumed throughout
the following analysis.

The derivation given below of the governing equations of poroelasticity follows that of
Zimmerman (2000a). This approach makes a strong connection with the pore volume and
therefore is very convenient for the present purposes. Although the derivation given in this
section will unavoidably repeat material that can already be found in the archival literature,
the following concise but complete derivation will allow the subsequent results regarding
processes that occur under conditions of uniaxial strain to be obtained in a self-contained
manner that does not require frequent appeal to seemingly ad hoc external equations.

The starting point is the definition of the following four porous rock compressibilities
(Zimmerman et al. 1986):

Cbc = −1

Vb

(
∂Vb
∂Pc

)
Pp

, Cbp = 1

Vb

(
∂Vb
∂Pp

)
Pc

, (1)

Cpc = −1

Vp

(
∂Vp
∂Pc

)
Pp

, Cpp = 1

Vp

(
∂Vp
∂Pp

)
Pc

, (2)

where Vb is the macroscopic bulk volume, Vp is the pore volume, Pp is the pore pressure,
and Pc is the confining pressure, which is also equal to the hydrostatic part of the stress
tensor, where the convention is used here that compressive stresses and compressive strains
are reckoned as positive numbers. Note also that the confining stress is defined here to include
all three of the normal stress components, not only the two lateral stresses, as is done in other
contexts. The bulk and pore volumes are related by Vb − Vp = Vm, where Vm is the volume
of the rock matrix, i.e. the mineral phase. The porosity is given by φ = Vp/Vb.

The bulk and pore strain increments can be expressed in terms of the porous rock com-
pressibilities, as follows:
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dεb = −dVb
Vb

= CbcdPc − CbpdPp, (3)

dεp = −dVp
Vp

= CpcdPc − CppdPp. (4)

Use of simple superposition and reciprocity arguments shows that the four coefficients in
Eqs. (3) and (4) are related by the following three relationships (Geertsma 1957; Zimmerman
et al. 1986):

Cbc − Cbp = Cm, (5)

Cpc − Cpp = Cm, (6)

Cbp = φCpc, (7)

where Cm is the compressibility of the solid material (i.e. mineral phase).
The development of a linearised theory of poroelasticity that is valid under non-hydrostatic

loadings starts with Hooke’s law for an isotropic non-porous material (Jaeger et al. 2007):

εxx = 1

2G

[
σxx − ν

(1 + ν)
(σxx + σyy + σzz)

]
, (8)

εyy = 1

2G

[
σyy − ν

(1 + ν)
(σxx + σyy + σzz)

]
, (9)

εzz = 1

2G

[
σzz − ν

(1 + ν)
(σxx + σyy + σzz)

]
, (10)

εxy = σxy/2G, εxz = σxz/2G, εyz = σyz/2G, (11)

where {εxx , εyy, εzz} are the normal strains, {σxx , σyy, σzz} are the normal stresses,
{εxy, εxz, εyz} are the shear strains, {σxy, σxz, σyz} are the shear stresses, G is the shear
modulus, and ν is Poisson’s ratio. Note that these stresses and strains represent incremental
changes relative to the initial in situ values. These relations can be written in matrix form as

ε = 1

2G
σ − ν

2G(1 + ν)
trace(σ)I. (12)

where I is the 3 × 3 identity matrix, and trace(σ) = σxx + σyy + σzz .
The simplest way to extend Hooke’s law to poroelastic materials is to start with Eqs.

(8–11), and note from Eq. (3) that an incremental change in the pore pressure will lead to an
incremental bulk strain of −CbpdPp, which in the context of a linearised theory is equivalent
to −CbpPp. If the rock is macroscopically isotropic, then the three normal strains caused
by a pore pressure increment must be equal, and so they must each be equal to −CbpPp/3.
Furthermore, within the context of a linearised theory, an increment in pore pressure cannot
cause a shear strain in an isotropic rock. Hence, Hooke’s law for an isotropic poroelastic rock
takes the form:

ε = 1

2G
σ − ν

2G(1 + ν)
trace(σ)I − Cbp

3
PpI, (13)

where Pp represents the incremental change in pore pressure relative to the initial reservoir
pressure, prior to any fluid extraction. In Eq. (13), and subsequent equations, the stresses
and strains at each point must be interpreted as average values taken over an “infinitesimal”
region that is nevertheless large enough to encompass some suitably large number of grains
and pores (Bear 1988).
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Recalling from Eq. (5) thatCbp = Cbc−Cm, and noting thatCbc = 1/Kbc = 1/K , where
K is the macroscopic bulk modulus, Eq. (13) can be written as:

ε = 1

2G
σ − ν

2G(1 + ν)
trace(σ)I − α

3K
PpI, (14)

where α is the Biot coefficient, defined by (Biot and Willis 1957; Detournay and Cheng
1993)

α = 1 − Cm

Cbc
= 1 − Kbc

Km
= 1 − K

Km
. (15)

Taking the trace of both sides of Eq. (14), and recalling the relation K = 2G(1+ν)/3(1−2ν),
yields

trace(ε) = 1

3K
trace(σ) − α

K
Pp. (16)

The bulk strain is equal to the trace of the strain tensor, and so Eq. (16) shows that

εb = 1

K

[
trace(σ)

3
− αPp

]
= Cbc

[
trace(σ)

3
− αPp

]
. (17)

Note that integrationofEq. (3), for the linearised case inwhich the compressibility coefficients
do not vary with stress, followed by use of Eq. (15), yields εb = Cbc(Pc − αPp). Hence,
under non-hydrostatic stress states, the term (1/3)trace(σ) = (σxx + σyy + σzz)/3 plays the
role of the confining pressure, Pc.

The equations for the stresses in terms of the strains are found by inverting Eqs. (8–11),
which yields

σ − αPpI = 2G

[
ε + ν

1 − 2ν
trace(ε)I

]
= 2Gε + 2Gν

1 − 2ν
trace(ε)I, (18)

where 2Gν/(1 − 2ν) is the Lamé parameter, λ. This relation can be written in component
form as:

σxx − αPp = 2Gεxx + λ(εxx + εyy + εzz), (19)

σyy − αPp = 2Gεyy + λ(εxx + εyy + εzz), (20)

σzz − αPp = 2Gεzz + λ(εxx + εyy + εzz), (21)

σxy = 2Gεxy, σxz = 2Gεxz, σyz = 2Gεyz . (22)

These equations are identical to those for a non-porous isotropic elastic rock, except that
the term αPp is subtracted from each of the normal stresses, to yield the so-called effective
stresses. (The effective stress tensor is sometimes denoted by σ′ = σ − αPpI.) Constitutive
equations and effective stress coefficients for anisotropic poroelastic rocks have been studied
by Carroll (1979), Thompson and Willis (1991), and Cheng (1997). However, the case of
anisotropy will not be pursued further in the present paper.

The above equations contain the pore fluid pressure as one of the basic variables. In order
to fully incorporate the pore fluid into the theory of poroelasticity and relate it to the changes
in pore volume, first consider a region of rock having bulk volume Vb, whose pore space
contains an amount of fluid having mass m. If the density of the pore fluid is ρ f , the volume
occupied by this fluid is m/ρf . If the pores are fully saturated, this fluid volume is also equal
to the pore volume, Vp. The incremental change in the pore volume is therefore given by:

dVp = d(m/ρf ) = dm

ρf
− mdρf

ρ2
f

= dm

ρf
− m

ρf

dρf
ρf

. (23)
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But dρf/ρf = Cf dPp, where Cf is the compressibility of the pore fluid, and so Eq. (23) can
be written as:

dVp = dm

ρf
− VpCf dPp. (24)

Dividing all terms by the bulk volume gives

dVp
Vb

= 1

Vb

dm

ρf
− φCf dPp. (25)

The change in the volumetric fluid content of a given region of rock can therefore be broken
up into two parts. The second term on the right represents compression or expansion of the
fluid that is already in that region, whereas the first term on the right represents additional
fluid moving into the region. This first term is denoted by dζ and is defined as that portion
of the change in fluid volume that is due solely to mass transfer, i.e.

dζ ≡ 1

Vb

dm

ρ
= dVp

Vb
+ φCfdPp. (26)

Recalling Eq. (4) for the pore volume change, the increment in fluid content, dζ , can also be
expressed as:

dζ = −φ[CpcdPc − (Cpp + Cf )dPp]. (27)

In an undrained process, the increment in fluid content must by definition be zero. Setting
dζ = 0 in Eq. (27) yields

B =
(
dPp
dPc

)
ζ

= Cpc

Cpp + Cf
= Cpp + Cm

Cpp + Cf
, (28)

where B is Skempton’s induced pore pressure coefficient. Using the relations (5–7) between
the porous rock compressibilities, Eq. (27) can also be written as:

dζ = −αCbc

(
dPc − 1

B
dPp

)
= − α

K

(
dPc − 1

B
dPp

)
. (29)

Equation (29) can be integrated, making use of the fact, by definition, ζ = 0 in the unstressed
state, to yield

ζ = − α

K

(
Pc − 1

B
Pp

)
. (30)

Inverting Eq. (30) by using Eq. (17) to eliminate Pc yields

Pp = BK

α(1 − αB)
(ζ + αεb) ≡ M(ζ + αεb), (31)

which expresses the pore pressure in terms of the bulk volumetric strain and the excess fluid
content. The parameter M , also sometimes denoted by Q, is known as the Biot modulus.

3 Diffusion Equation for the Pore Pressure

In the previous equations, the pore fluid pressure was treated as an independent variable. This
is appropriate for laboratory experiments, in which the pore fluid pressure can be controlled.
In field-scale situations, the spatial and temporal evolution of the pore fluid pressure will
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be governed by a partial differential equation. This equation can be derived by considering
conservation of mass for the pore fluid and using Darcy’s law to relate the fluid flux to the
pore pressure gradient.

Consider an imaginary surface in a rock, having area dA, and an outward unit normal
vector n. The fluid flux vector, q, with dimensions of [m/s], is defined such that the total
volume of fluid that passes through this surface, per unit time, is given by (q · n)dA, where
q · n is the component of the flux that is normal to the surface. Now consider a piece of rock
that occupies a connected region of space R, with outer boundary ∂R. The total volumetric
flux of fluid leaving this region, per unit time, is given by the integral of (q · n)dA over the
entire outer surface. The total increment of fluid volume stored within that region, due to
mass transfer across the outer boundary, is found by integrating ζ over the region. The time
rate of change of this integral must equal the total flux into the region, so∫∫∫

R

∂ζ

∂t
dV +

∫∫
∂R

(q · n)dA = 0. (32)

Using the divergence theorem to transform the surface integral into a volume integral yields∫∫∫
R

(
∂ζ

∂t
+ ∇ · q

)
dV = 0, (33)

where ∇ · q = (∂qx/∂x) + (∂qy/∂y) + (∂qz/∂z) is the divergence of the fluid flux. Since
Eq. (33) must hold for any arbitrary sub-region of R, the bracketed integrand must vanish
identically at all points of R, i.e.

∂ζ

∂t
+ ∇ · q = 0. (34)

For sufficiently low flowrates, the volumetric fluid flux in an hydraulically isotropic rock is
proportional to the gradient of the pore pressure gradient, according to Darcy’s law:

q = − k

μ
∇Pp, (35)

where k is the permeability, and μ is the fluid viscosity. (The gravity term is ignored here,
for simplicity; see Bear (1988) for a discussion of the treatment of that term.) Insertion of
Eq. (35) into Eq. (34) yields

∂ζ

∂t
= k

μ
∇2Pp. (36)

If the assumption is made that the rock is rigid and undeformable, then Eq. (27) reduces to
dζ = φCfdPp, and Eq. (36) takes the form

∂Pp
∂t

= k

φμCf
∇2Pp. (37)

Equation (37) is a diffusion equation for the pore pressure, in which the hydraulic diffusivity
is given by D = k/φμCf .

If the rock is deformable, and the confining pressure somehow remains constant, Eq. (27)
reduces to dζ = φ(Cpp + Cf )dPp, in which case Eq. (37) takes the form (Marsily 1986)

∂Pp
∂t

= k

φμ(Cf + Cpp)
∇2Pp. (38)
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In the general case of a deformable poroelastic rock, making no assumptions about the
macroscopic stresses or strains and combining Eq. (27) with Eq. (36), yields

∂Pp
∂t

= kM

μ
∇2Pp + αM

∂εb

∂t
. (39)

This equation for the evolution of the pore pressure can also be expressed entirely in terms
of pressures and stresses by using Eq. (17) to eliminate εb, to arrive at

∂Pp
∂t

= kBK

αμ
∇2Pp + B

∂Pc
∂t

. (40)

The pore pressure is therefore governed by a diffusion-type equation that contains a
source/sink term that couples the change in pore pressure to the change in the confining
pressure or the bulk strain. The “source term” appearing in the pressure diffusion equation
is due to the induced pore pressure caused by a change in confining stress, caused by the
Skempton effect (Cheng 2016).

4 Pore Volume and Porosity Changes Under Uniaxial Strain Conditions

When fluid is produced from a reservoir, it is often assumed that the reservoir deforms under
conditions of zero lateral strain (Fjaer et al. 2008). Although this is a simplification of the
deformation that occurs in a reservoir, the assumption of uniaxial strain is nevertheless highly
accurate in many situations (Altmann et al. 2010).

For a non-porous rock, the uniaxial compressibility can be defined as the coefficient that
relates the axial strain to the vertical stress σzz , with the other two lateral strains held constant.
Using Eqs. (8–10), this coefficient can be shown to be given by:

Cuni =
(

∂εzz

∂σzz

)
εxx ,εyy

= 1

λ + 2G
= (1 + ν)

3(1 − ν)K
= (1 + ν)

3(1 − ν)
Cbc. (41)

If uniaxial compaction of a porous rock occurs under drained conditions, setting the change
in pore pressure equal to zero in Eq. (21) shows that Eq. (41) will continue to hold.

This uniaxial compressibility coefficient may be relevant to compaction that occurs over
geological time spans, due to continued deposition of sediments, for example. Of more direct
engineering relevance is the deformation caused bywithdrawal of fluid froma reservoir, while
the lateral strains and the vertical stress are held constant. This coefficient is found directly
from Eq. (21) to be (Geertsma 1966):

Cuni,p = −
(

∂εzz

∂Pp

)
εxx ,εyy ,σzz

= α

λ + 2G
= (1 + ν)

3(1 − ν)
αCbc. (42)

Comparison of Eqs. (41) and (42) shows that the uniaxial compressibility with respect to
changes in pore pressure is equal to the uniaxial compressibility with respect to changes in
axial stress, multiplied by the Biot coefficient.

A uniaxial pore volume compressibility can be defined as (Raaen 1993):

Cuni
pp = 1

Vp

(
∂Vp
∂Pp

)
εxx ,εyy ,σzz

. (43)
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This coefficient can be expressed in terms of the hydrostatic compressibility parameters, by
starting with the following identity,

Vb = Vp + Vm. (44)

Taking derivatives with respect to pore pressure under conditions of constant lateral strain and
constant vertical stress, and recalling the “compression is positive” sign convention, leads to

(
∂εb

∂Pp

)
uni

= φ

(
∂εp

∂Pp

)
uni

+ (1 − φ)

(
∂εm

∂Pp

)
uni

. (45)

But εb = εxx + εyy + εzz , and the two lateral strains are zero, so for uniaxial deformation,
εb = εzz . The first term in parentheses on the right in Eq. (45) is the negative of the uniaxial
pore compressibility defined by Eq. (43), so Eq. (45) can be rewritten as:

φCuni
pp = −

(
∂εzz

∂Pp

)
uni

+ (1 − φ)

(
∂εm

∂Pp

)
uni

. (46)

The first term on the right of Eq. (46) is the uniaxial compressibility with respect to pore
pressure, which is given by Eq. (42). Hence,

Cuni
pp = (1 + ν)αCbc

3(1 − ν)φ
+ (1 − φ)

φ

(
∂εm

∂Pp

)
uni

. (47)

The derivative of the matrix strain with respect to pore pressure can be found by starting
with the following general equation for the solid mineral phase strain, which holds under
hydrostatic or non-hydrostatic stresses (Zimmerman et al. 1994):

εm = Cm

(
Pc − φPp
1 − φ

)
. (48)

Although no vertical stress is applied during this process, the change in pore pressure will
induce lateral stresses, due to the lateral constraint and the Poisson effect. These stresses can
be found from Eqs. (19–21) to be (Hettema et al. 1998)

σxx = σyy = (1 − 2ν)αPp
(1 − ν)

. (49)

But Pc = (σxx + σyy + σzz)/3, so inserting Eq. (49) into Eq. (48) yields

εm = φ

1 − φ

[
2(1 − 2ν)α

3(1 − ν)φ
− 1

]
CmPp. (50)

The derivative in Eq. (47) can now be calculated, from Eq. (50), to yield

Cuni
pp = (1 + ν)αCbc

3(1 − ν)φ
+

[
2(1 − 2ν)α

3(1 − ν)φ
− 1

]
Cm. (51)

Use of Eqs. (5–7) allows the uniaxial pore compressibility to also be expressed as:

Cuni
pp = Cpp − 2(1 − 2ν)α

3(1 − ν)
(Cpp + Cm). (52)

This latter expression shows that lateral confinement causes the pore compressibility to be
lower than it would be under hydrostatic conditions. As it is typically the case thatCpp � Cm
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490 R. W. Zimmerman

(Laurent et al. 1993), the ratio of uniaxial to hydrostatic pore compressibility is approximately
given by

Cuni
pp

Chydro
pp

≈ 1 − 2(1 − 2ν)α

3(1 − ν)
. (53)

For typical values for a consolidated sandstone (Detournay andCheng 1993), such asα = 0.7
and ν = 0.15, Eq. (53) shows that the uniaxial pore volume compressibility will be about
three-fifths as large as the hydrostatic pore volume compressibility.

As pointed out by Raaen (1993), it is often assumed, by an unwarranted analogy with Eq.
(42) for the bulk volumecompressibility, that the ratio of uniaxial pore volumecompressibility
to hydrostatic pore volumecompressibilitywill be (1+ν)/3(1−ν). Comparisonwith the exact
expression (52) shows that this assumption may lead to errors of up to 40%, when converting
hydrostatic pore volume compressibilities to uniaxial values (see data in Zimmerman 2000b).

A uniaxial version of Cpc can be defined, with respect to changes in vertical overburden
stress, as

Cuni
pc =

(
∂εp

∂σzz

)
εxx ,εyy ,Pp

. (54)

But εp = CpcPc − CppPp, so

Cuni
pc = Cpc

(
∂Pc
∂σzz

)
εxx ,εyy ,Pp

− Cpp

(
∂Pp
∂σzz

)
εxx ,εyy ,Pp

. (55)

The second derivative on the right is zero, by definition, since Pp is held constant in this
process. Equations (19–21) show that during uniaxial strain, with pore pressure held constant,
σxx = σyy = λεzz , and σzz = (λ + 2G)εzz . Hence, Pc = (σxx + σyy + σzz)/3 = (3λ +
2G)εzz/3 = (3λ + 2G)σzz/3(λ + 2G), and so the first derivative on the right is given by:

(
∂Pc
∂σzz

)
εxx ,εyy ,Pp

= 3λ + 2G

3(λ + 2G)
= 1 + ν

3(1 − ν)
. (56)

Substituting Eq. (56) into Eq. (55) yields

Cuni
pc = 1 + ν

3(1 − ν)
Chydro
pc . (57)

The various elements are now in place to derive a master equation for the change in porosity
that results from changes in the pore pressure and/or the vertical overburden stress, under
conditions of uniaxial strain. Starting with φ = Vp/Vb, and taking the logarithmic derivative,
yields

dφ

φ
= dVp

Vp
− dVb

Vb
= −εp + εb. (58)

Each of the two strain terms on the right side will depend on the increment in vertical stress
and the increment in pore pressure. The coefficient that relates pore strain to vertical stress
is given by Eq. (57), the coefficient that relates pore strain to pore pressure is given by Eq.
(51), the coefficient that relates bulk strain to vertical stress is given by Eq. (41), and the
coefficient that relates bulk strain to pore pressure is given by Eq. (42). Inserting all four of
these differential terms into Eq. (58) yields, after multiplying through by φ:
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dφ = −
[

(1 + ν)φCpc

3(1 − ν)

]
dσzz +

{
(1 + ν)αCbc

3(1 − ν)
+

[
2(1 − 2ν)α

3(1 − ν)
− φ

]
Cm

}
dPp

+
[

(1 + ν)φCbc

3(1 − ν)

]
dσzz −

[
(1 + ν)αφCbc

3(1 − ν)

]
dPp

=
[

(1+ν)φ(Cbc−Cpc)

3(1−ν)

]
dσzz+

{
(1+ν)αCbc(1−φ)

3(1−ν)
+

[
2(1−2ν)α

3(1−ν)
−φ

]
Cm

}
dPp.

(59)

Using relations (5–7,15), this equation for the porosity change can also be written as

dφ = −
{

(1 + ν)[Cbc(1 − φ) − Cm]
3(1 − ν)

}
dσzz +

{
(1 + ν)αCbc(1 − φ)

3(1 − ν)

+
[
2(1 − 2ν)α

3(1 − ν)
− φ

]
Cm

}
dPp. (60)

It is worthwhile to compare this new equation, derived within the context of linearised
poroelasticity, with the widely used equation for the porosity change that was suggested
by Palmer and Mansoori (1998). In the present notation, making use of Eq. (15) where
convenient, their equation can be written as:

dφ = −
[

(1 + ν)Cbc

3(1 − ν)
− (1 − φ) f Cm

]
dσzz +

[
(1 + ν)αCbc

3(1 − ν)
+ (1 − φ)(1 − f )Cm

]
dPp.

(61)

where f is a parameter that can vary between 0 and 1, and which, according to Moore et al.
(2015), is related to the ratio of isotropic strain to deviatoric strain within the mineral grains.
Although there is no choice of the f parameter that can cause expressions (60) and (61) to
become identical, it is interesting to note that, in the limit when the porosity of the rock is
low, and the Biot coefficient is close to 1 (which corresponds to a very compressible porous
rock), the two expressions will coincide if f is taken to be

f = 1 + ν

3(1 − ν)
. (62)

5 Effect of Temperature on Porosity Under Uniaxial Strain Conditions

It is also of interest to have access to expressions for the changes in axial strain, pore volume,
and porosity, caused by, say, a uniform change in temperature in a reservoir. Before deriving
these expressions, it worth recalling that, if a micro-homogeneous porous material is heated,
in the absence of any external constraints, the pore volume and bulk volume will each expand
by the same fractional amount, and the porosity will remain unchanged (Cheng 2016, Eq.
11.43). Moreover, the drained thermal expansion coefficient of the porous material, which is
the primitive coefficient that naturally appears in the constitutive equations, will be exactly
equal to the thermal expansion coefficient of the non-porous mineral phase (McTigue 1986;
Cheng 2016, Eq. 11.54). But if a porous material is heated while subject to the constraint of
uniaxial strain, lateral stresses will be induced, due to the Poisson effect, and these stresses
will in turn lead to a change in porosity. The coefficient that relates this change in porosity to
the change in temperature can be found from an analysis similar to that carried out in Sect. 4,
but now using the thermoporoelastic version of Hooke’s law.
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Hooke’s law for an isotropic, porous, thermoelastic rock is found from the poroelastic
version by simply subtracting a term βθ from each normal strain (Zimmerman 2000a):

εxx = 1

2G

[
σxx − ν

(1 + ν)
(σxx + σyy + σzz)

]
− αPp

3K
− βθ, (63)

εyy = 1

2G

[
σyy − ν

(1 + ν)
(σxx + σyy + σzz)

]
− αPp

3K
− βθ, (64)

εzz = 1

2G

[
σzz − ν

(1 + ν)
(σxx + σyy + σzz)

]
− αPp

3K
− βθ, (65)

εxy = σxy/2G, εxz = σxz/2G, εyz = σyz/2G. (66)

where β is the linear thermal expansion coefficient, and θ = T − To is the temperature
increment above some initial baseline temperature To, at which the strains are considered to
be zero. The minus signs again appear due to the fact that extensile strains are considered
to be negative. Although the thermal expansion coefficient is usually denoted by α, in the
present paper it will be denoted by β, since α is used here for the Biot coefficient.

To find the coupling coefficients, which relate changes in temperature to changes in the
strains, porosity, etc., the pore pressure terms in Eqs. (63–65) can be ignored, as pore pres-
sure will be held constant in the processes now being considered. This can be viewed as
corresponding either to a fully drained process, or an undrained situation in which the pore
fluid is sufficiently compressible that a temperature change induces a negligible increase in
pore pressure (Palmer and Mansoori 1998). Furthermore, Eq. (66) can be ignored, as the
volumetric strains do not involve the shear strain components. Equations (63–65) can be
inverted to give the stresses as functions of the strains:

σxx = 2Gεxx + 2Gν

1 − 2ν
(εxx + εyy + εzz) + 3βK θ, (67)

σyy = 2Gεyy + 2Gν

1 − 2ν
(εxx + εyy + εzz) + 3βK θ, (68)

σzz = 2Gεzz + 2Gν

1 − 2ν
(εxx + εyy + εzz) + 3βK θ. (69)

Consider now a state of uniaxial strain in the vertical z-direction, i.e. εxx = εyy = 0,
σzz = 0, and Pp = 0, in which case the resultant stresses and strains are due only to the
temperature increment. In this situation, Eq. (69) shows that vertical strain, which is the only
nonzero strain, is given by

εzz = −3βK θ(1 − 2ν)

2G(1 − ν)
= − (1 + ν)

(1 − ν)
βθ. (70)

Since the two lateral strains are zero, the bulk volumetric strain is equal to the vertical strain:

εb = − (1 + ν)

(1 − ν)
βθ. (71)

The change in porosity can be found by appropriately combining the bulk volumetric strain
and the strain in the mineral grains. First, note that, by definition,

φ = Vp
Vb

= Vb − Vm
Vb

= 1 − Vm
Vb

. (72)
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Taking differentials yields

dφ = −dVm
Vb

+ Vm
V 2
b

dVb = −Vm
Vb

dVm
Vm

+ Vm
Vb

dVb
Vb

= −(1 − φ)(εb − εm). (73)

The bulk strain is given by Eq. (71), and so an expression for the strain in the mineral phase
is needed in order to find the change in porosity.

Consider now the thermoelastic Hooke’s law applied at the micro-scale, for the mineral
phase:

εxx = 1

2Gm

[
τxx − νm

(1 + νm)
(τxx + τyy + τzz)

]
− βθ, (74)

εyy = 1

2Gm

[
τyy − νm

(1 + νm)
(τxx + τyy + τzz)

]
− βθ, (75)

εzz = 1

2Gm

[
τzz − νm

(1 + νm)
(τxx + τyy + τzz)

]
− βθ, (76)

where the subscript m is used for the elastic moduli of the mineral phase, but none is needed
for the thermal expansion coefficient of the mineral phase, βm, as it is identical to the thermal
expansion coefficient of the porous rock, β. Note that these stresses and strains are defined
at the micro-scale, so that, in a sandstone, for example, they would vary within each sand
grain. This is in contrast the “macroscopic” stresses and strains used in previous sections,
which were averaged out over a suitable REV.

The local volumetric strain in the mineral phase can be found by summing Eqs. (74–76):

εm = εxx + εyy + εzz = 1

2Gm

(1 − 2νm)

(1 + νm)
(σxx + σyy + σzz) − 3βθ

= 1

Km

(σxx + σyy + σzz)

3
− 3βθ

= 1

Km

tr(σ)

3
− 3βθ. (77)

Averaging the local volumetric bulk strain over the entire mineral phase yields

〈εm〉 = 1

Km

〈tr(σ)〉
3

− 3β 〈θ〉 . (78)

The temperature increment is assumed to be uniform throughout the porous body, so 〈θ〉 = θ .
The term 〈tr(σ)〉 /3 is the spatial average of the mean normal stress, averaged throughout the
mineral phase. This quantity is related to the externally applied confining pressure, Pc, and
the pore pressure, Pp, by (Zimmerman et al. 1994, Eq. A8)

〈tr(σ)〉
3

= Pc − φPp
1 − φ

. (79)

As no pore pressure increment is being considered in this process, combining Eqs. (78) and
(79) yields

〈εm〉 = Pc
Km(1 − φ)

− 3βθ. (80)

The term Pc is, by definition, the mean value of the three macroscopic normal stresses, i.e.
Pc = (σxx + σyy + σzz)/3. Under uniaxial strain conditions, noting that the stresses in this
discussion are all incremental stresses, σzz = 0, and Eqs. (67–68) show that
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σxx = σyy = 2Gν

1 − 2ν
εzz + 3βK θ, (81)

from which it follows that

Pc = σxx + σyy + σzz

3
= 4Gν

3(1 − 2ν)
εzz + 2βK θ. (82)

Recalling Eq. (70) for the vertical strain, Eq. (82) can be written as

Pc = − 4Gν

3(1 − 2ν)

(1 + ν)

(1 − ν)
βθ + 2βK θ = − 2Kν

(1 − ν)
βθ + 2βK θ. (83)

Inserting this expression into Eq. (80) yields

〈εm〉 = − 2Kν

(1 − ν)

βθ

Km(1 − φ)
+ 2βK θ

Km(1 − φ)
− 3βθ. (84)

But K/Km = 1 − α, where α is the Biot coefficient, so:

〈εm〉 = − 2ν(1 − α)

(1 − ν)(1 − φ)
βθ + 2(1 − α)

(1 − φ)
βθ − 3βθ

= 2(1 − α)

(1 − φ)
βθ

[
1 − ν

1 − ν

]
− 3βθ

= 2(1 − α)

(1 − φ)

(1 − 2ν)

(1 − ν)
βθ − 3βθ. (85)

Finally, inserting the bulk strain from Eq. (71), and the mineral strain from Eq. (85), into Eq.
(73), yields

dφ = (1 − φ)

[
(1 + ν)

(1 − ν)
βθ + 2(1 − α)

(1 − φ)

(1 − 2ν)

(1 − ν)
βθ − 3βθ

]

= (1 − φ)

[
(1 + ν)

3(1 − ν)
+ 2(1 − α)

(1 − φ)

(1 − 2ν)

3(1 − ν)
− 1

]
3βθ

= −
[
2(1 − 2ν)(α − φ)

3(1 − ν)

]
βθ. (86)

Since the Biot coefficient α must always be greater than the porosity φ (Zimmerman et al.
1986), this expression shows that an increase in temperature causes a decrease in porosity,
as discussed by Palmer and Mansoori (1998).

This new expression, derived rigorously within the context of linearised thermoporoelas-
ticity, can be compared with the expression that was presented without derivation by Palmer
and Mansoori (1998), which can be written in the present notation as

dφ = −
[
3(1 − ν)(1 − φ) − (1 + ν)

3(1 − ν)

]
βθ. (87)

Although the two expressions differ, Palmer and Mansoori’s heuristic expression, Eq. (87),
numerically approaches the exact relation, Eq. (86), in the limit of low porosity and high Biot
coefficient and coincides with it when φ → 0 and α → 1.
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6 Diffusion Equation for the Pore Pressure Under Uniaxial Strain
Conditions

As shown in Sect. 3, if the rock formation is rigid and non-deformable, the pore pressure
will obey a diffusion equation, with a hydraulic diffusivity given by D = k/φμCf , where
the product φCf is referred to as the storativity. The approximation of a rigid reservoir may
be acceptable in some situations. But it has long been recognised in the oil and gas industry
that, for most reservoirs, the “formation compressibility” also contributes to the storativity.

Most early discussions of this issue were imprecise with regard to the appropriate “forma-
tion compressibility” term that would enter into the storativity. Matthews and Russell (1967,
p. 7), in a derivation that implicitly assumed that the pore volume could change while the
bulk volume remains constant, arrived at a formation compressibility of (1/φ)(dφ/dPp).
(Note that in much of the petroleum engineering literature, the “formation compressibility”
is denoted by Cf , whereas in the present paper, the symbol Cf always refers to the fluid
compressibility.) However, this assumption of a compliant pore space in a macroscopically
rigid reservoir is physically inconsistent.

Chierici (1994, p. 60, p. 141) derived a “formation compressibility” that is given by, in the
present notation (1− φ)Cpp − φCm; this term was then added to the fluid compressibility to
yield a “total compressibility”. Marsily (1986), in a rigorous and elegant treatment aimed at
hydrogeologists, considered the case in which the confining stress does not vary during fluid
extraction. In the present notation, this assumption leads to Eq. (38) of Sect. 3, in which the
hydrostatic pore volume compressibility is added to the fluid compressibility in the diffusivity
term. But this type of boundary condition does not correspond to the uniaxial strain conditions
that typically occur during depletion of oil and gas reservoirs. Although in more recent years
it has often been asserted that the uniaxial pore volume compressibility, rather than the
hydrostatic pore volume compressibility, should be added to the fluid compressibility in the
diffusion equation, no derivation seems yet to have been given to show that this assumption
is consistent with the equations that result from a rigorous poroelastic analysis. Such a
derivation will now be given, based on the equations presented in the previous sections of this
paper.

From Eq. (49) and the definition Pc = (σxx +σyy +σzz)/3, it follows that, under uniaxial
strain, Pc = 2(1− 2ν)αPp/3(1− ν). Inserting this result into the general Eq. (40), which is
valid for all deformations and processes, yields[

1 − 2(1 − 2ν)αB

3(1 − ν)

]
∂Pp
∂t

= kBK

αμ
∇2Pp. (88)

Using Eq. (28) to express B in terms of the various compressibility coefficients leads to[
1 − 2(1 − 2ν)α(Cpp + Cm)

3(1 − ν)(Cpp + Cf )

]
∂Pp
∂t

= k(Cpp + Cm)K

αμ(Cpp + Cf )
∇2Pp. (89)

Multiplying both sides by the term (Cpp + Cf ) gives[
Cf + Cpp − 2(1 − 2ν)α(Cpp + Cm)

3(1 − ν)

]
∂Pp
∂t

= k(Cpp + Cm)K

αμ
∇2Pp. (90)

Now consider the right-hand side of Eq. (90). According to definition (15), α = (Cbc −
Cm)/Cbc. But Eq. (8) shows that Cbc − Cm = Cbp, and so α = Cbp/Cbc, which, combined
with Eq. (7), shows that α = φCpc/Cbc. Furthermore, K = 1/Cbc by definition, and so
K/α = KCbc/φCpc = 1/φCpc. In the numerator, the term Cpp + Cm is equal to Cpc,
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according to Eq. (6). Hence, the coefficient in front of the Laplacian term on the right-hand
side of Eq. (90) is simply equal to k/μφ, and this equation can therefore be written as

∂Pp
∂t

= k

μφ
[
Cf + Cpp − 2(1−2ν)α

3(1−ν)
(Cpp + Cm)

]∇2Pp. (91)

Comparison with Eq. (52) shows that the term added to the fluid compressibility in the
denominator of Eq. (91) is nothing other than the uniaxial pore volume compressibility,Cuni

pp .
This completes the first demonstration, within the context of the fully coupled theory of
poroelasticity, that under conditions of uniaxial strain, the pore fluid pressure is governed by
a pure diffusion equation of the form

∂Pp
∂t

= k

φμ(Cf + Cuni
pp )

∇2Pp. (92)

A similar equation was suggested by Terzaghi in the context of his famous “consolidation
problem” of soil mechanics, under the assumption of an incompressible pore fluid; see Terza-
ghi et al. (1996) and Jaeger et al. (2007), Sect. 7.6.

Although it may seem obvious that “the pore compressibility term that appears in the
pressure diffusion equation should be the uniaxial pore volume compressibility (UPVC)”, it
must be remembered that the UPVC is not a basic parameter in any of the myriad versions of
the theory of linearised poroelasticity.On the contrary,manipulations of the coupled equations
governing mechanical deformation and fluid flow lead to a very complicated expression for
the compressibility term that contributes to the storativity, as given in Eq. (88), in terms of
more “basic” parameters such as the Biot and Skempton coefficients, and it is not obvious that
this term is equivalent to theUPVC thatwould bemeasured in a static compressibility test. The
derivation given above, which required several pages of mathematical manipulations, shows
that whereas the final result is perhaps not surprising, it is neither trivial nor self-evident.

7 Summary and Conclusions

During production of fluids from an oil or gas reservoir, the deformation is generally assumed
to occur under conditions of uniaxial vertical strain. Under these conditions, the changes
that occur in the pore volume, and the porosity, will each depend on the increments in the
pore pressure, Pp , the overburden stress, σzz , and the temperature, θ . The coefficients that
couple the changes in {Pp, σzz, θ} to the resultant changes in pore volume and porosity have
been derived within the context of the linearised theory of porothermoelasticity, for micro-
homogeneous porousmedia,without invoking any additional assumptions or approximations.
The changes in pore volume are of great interest formaterial balance calculations,whereas the
changes in porosity are needed as input formodels that relate changes in porosity to changes in
permeability. These latter models are of particular importance in coalbed methane reservoirs,
the permeabilities of which are highly stress sensitive (Seidle et al. 1992; Shi and Durucan
2004; Moore et al. 2015).

Comparison of the new equation for the porosity change as a function of pore pressure,
with the commonly used Palmer–Mansoori equation (Palmer and Mansoori 1998), sheds
light on their undefined f parameter and shows that in the limit of low porosity and high
Biot coefficient, it is equal to (1 + ν)/3(1 − ν). Assuming a Poisson ratio for coal of 0.45,
this expression is consistent with the value of f = 0.9 that has been recently been suggested
by Moore et al. (2015). Comparison of the newly derived equation for the porosity change
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as a function of temperature, with the porosity–temperature equation suggested by Palmer
and Mansoori, shows that their equation is again an approximation to the exact result, but
becomes increasingly accurate in the limit of low porosity and high Biot coefficient.

It should be reiterated that these above-mentioned results, Eqs. (60) and (86), have been
derived under the assumption that the porous rock is elastically isotropic, and homogeneous
on the grain scale—the latter being the so-called ideal porous medium assumption (Cheng
2016).

Finally, it has been shown, apparently for the first time, that under conditions of uniaxial
strain, the partial differential equation that governs the evolution of the pore pressure is a
pure diffusion equation, with a total compressibility term that (exactly) equals the sum of the
fluid compressibility and the uniaxial pore volume compressibility.
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