7,097 research outputs found

    Abell 370: A Cluster with a Pronounced Triaxial Morphology

    Full text link
    We here combine Sunyaev-Zel'dovich effect, X-ray observations and spectroscopic redshifts of member galaxies, to constrain the intrinsic three-dimensional shape of the galaxy cluster: Abell 370. The cluster turns out to be strongly elongated along the l.o.s., with two (or more) substructures in the process of merging. Spectroscopy further suggests that the process must be taking place at a small angle respect to the l.o.s.Comment: 7 pages, 2 figures. Contribution to the Proceedings of the COSPAR Scientific Assembly, E1.2 "Clusters of Galaxies: New Insights from XMM-Newton, Chandra and INTEGRAL", Paris (France), July 19-20, 2004. Accepted for publication in Advances in Space Researc

    Modelling clusters of galaxies by f(R)-gravity

    Full text link
    We consider the possibility that masses and gravitational potentials of galaxy cluster, estimated at X-ray wavelengths, could be explained without assuming huge amounts of dark matter, but in the context of f(R)f(R)-gravity. Specifically, we take into account the weak field limit of such theories and show that the corrected gravitational potential allows to estimate the total mass of a sample of 12 clusters of galaxies. Results show that such a gravitational potential provides a fair fit to the mass of visible matter (i.e. gas + stars) estimated by X-ray observations, without the need of additional dark matter while the size of the clusters, as already observed at different scale for galaxies, strictly depends on the interaction lengths of the corrections to the Newtonian potential.Comment: 18 pages, 34 figure

    Characterizing the nature of Fossil Groups with XMM

    Full text link
    We present an X-ray follow-up, based on XMM plus Chandra, of six Fossil Group (FG) candidates identified in our previous work using SDSS and RASS data. Four candidates (out of six) exhibit extended X-ray emission, confirming them as true FGs. For the other two groups, the RASS emission has its origin as either an optically dull/X-ray bright AGN, or the blending of distinct X-ray sources. Using SDSS-DR7 data, we confirm, for all groups, the presence of an r-band magnitude gap between the seed elliptical and the second-rank galaxy. However, the gap value depends, up to 0.5mag, on how one estimates the seed galaxy total flux, which is greatly underestimated when using SDSS (relative to Sersic) magnitudes. This implies that many FGs may be actually missed when using SDSS data, a fact that should be carefully taken into account when comparing the observed number densities of FGs to the expectations from cosmological simulations. The similarity in the properties of seed--FG and non-fossil ellipticals, found in our previous study, extends to the sample of X-ray confirmed FGs, indicating that bright ellipticals in FGs do not represent a distinct population of galaxies. For one system, we also find that the velocity distribution of faint galaxies is bimodal, possibly showing that the system formed through the merging of two groups. This undermines the idea that all selected FGs form a population of true fossils.Comment: 9 pages, 3 figures. Submitted 01/12/2011 to MNRAS, referee report received 21/02/2012, accepted 22/02/201

    Steps toward a classifier for the Virtual Observatory. I. Classifying the SDSS photometric archive

    Full text link
    Modern photometric multiband digital surveys produce large amounts of data that, in order to be effectively exploited, need automatic tools capable to extract from photometric data an objective classification. We present here a new method for classifying objects in large multi-parametric photometric data bases, consisting of a combination of a clustering algorithm and a cluster agglomeration tool. The generalization capabilities and the potentialities of this approach are tested against the complexity of the Sloan Digital Sky Survey archive, for which an example of application is reported.Comment: To appear in the Proceedings of the "1st Workshop of Astronomy and Astrophysics for Students" - Naples, 19-20 April 200

    Quantum Dynamics of the Hubbard-Holstein Model in Equilibrium and Non-Equilibrium: Application to Pump-Probe Phenomena

    Full text link
    The spectral response and physical features of the 2D Hubbard-Holstein model are calculated both in equilibrium at zero and low chemical dopings, and after an ultra short powerful light pulse, in undoped systems. At equilibrium and at strong charge-lattice couplings, the optical conductivity reveals a 3-peak structure in agreement with experimental observations. After an ultra short pulse and at nonzero electron-phonon interaction, phonon and spin subsystems oscillate with the phonon period Tph≈80T_{ph} \approx 80 fs. The decay time of the phonon oscillations is about 150-200 fs, similar to the relaxation time of the charge system. We propose a criterion for observing these oscillations in high TcT_c compounds: the time span of the pump light pulse τpump\tau_{pump} has to be shorter than the phonon oscillation period TphT_{ph}.Comment: 4 pages, 4 figure

    The dynamical state of RX J1347.5−1145 from a combined strong lensing and X-ray analysis

    Get PDF
    We perform a combined X-ray and strong lensing analysis of RX J1347.5−1145, one of the most luminous galaxy clusters at X-ray wavelengths. We show that evidence from strong lensing alone, based on published Very Large Telescope (VLT) and new Hubble Space Telescope (HST) data, strongly argues in favour of a complex structure. The analysis takes into account arc positions, shapes and orientations, and is done thoroughly in the image plane. The cluster inner regions are well fitted by a bimodal mass distribution, with a total projected mass of Mtot= (9.9 ± 0.3) × 1014M⊙ h−1 within a radius of 360 kpc h−1 (1.5 arcmin). Such a complex structure could be a signature of a recent major merger as further supported by X-ray data. A temperature map of the cluster, based on deep Chandra observations, reveals a hot front located between the first main component and an X-ray emitting south-eastern subclump. The map also unveils a filament of cold gas in the innermost regions of the cluster, most probably a cooling wake caused by the motion of the cD inside the cool core region. A merger scenario in the plane of the sky between two dark matter subclumps is consistent with both our lensing and X-ray analyses, and can explain previous discrepancies with mass estimates based on the virial theore

    Steps towards a map of the nearby universe

    Get PDF
    We present a new analysis of the Sloan Digital Sky Survey data aimed at producing a detailed map of the nearby (z < 0.5) universe. Using neural networks trained on the available spectroscopic base of knowledge we derived distance estimates for about 30 million galaxies distributed over ca. 8,000 sq. deg. We also used unsupervised clustering tools developed in the framework of the VO-Tech project, to investigate the possibility to understand the nature of each object present in the field and, in particular, to produce a list of candidate AGNs and QSOs.Comment: 3 pages, 1 figure. To appear in Nucl Phys. B, in the proceedings of the NOW-2006 (Neutrino Oscillation Workshop - 2006), R. Fogli et al. ed

    Effects of electron-phonon coupling range on the polaron formation

    Full text link
    The polaron features due to electron-phonon interactions with different coupling ranges are investigated by adopting a variational approach. The ground-state energy, the spectral weight, the average kinetic energy, the mean number of phonons, and the electron-lattice correlation function are discussed for the system with coupling to local and nearest neighbor lattice displacements comparing the results with the long range case. For large values of the coupling with nearest neighbor sites, most physical quantities show a strong resemblance with those obtained for the long range electron-phonon interaction. Moreover, for intermediate values of interaction strength, the correlation function between electron and nearest neighbor lattice displacements is characterized by an upturn as function of the electron-phonon coupling constant.Comment: 5 pages and 4 figure
    • …
    corecore