780 research outputs found

    The community of learning is in the Baobab tree — how the branches stay together in the context of professional preparation.

    Get PDF
    This article explores how participation in a community of learning supported transformation on a personal and professional level in a Master’s programme at a South African university. It draws on the concept of transformational learning in the professional preparation of educational psychologists, and how such learning plays out in the development of critical perspectives and shifts in personal paradigms. We report on a two-year ethnographic study that involved 13 of a total of 15 students enrolled for an Educational Psychology Master’s course. One of us (CW) acted as participant observer in the study and recorded the experiences of the participants through reflective letters that included symbolic metaphors, semi-structured group focus interviews, as well as a verification questionnaire. In our analysis and interpretation we used the metaphor of the Baobab tree, ‘the tree turned upside down’, because it is known for its resilience, holding capacity and continuous growth. We found the image to powerfully represent the dynamics of professional preparation and transformation in higher education

    Angle-resolved photoemission study of the role of nesting and orbital orderings in the antiferromagnetic phase of BaFe2As2

    Full text link
    We present a detailed comparison of the electronic structure of BaFe2As2 in its paramagnetic and antiferromagnetic (AFM) phases, through angle-resolved photoemission studies. Using different experimental geometries, we resolve the full elliptic shape of the electron pockets, including parts of dxy symmetry along its major axis that are usually missing. This allows us to define precisely how the hole and electron pockets are nested and how the different orbitals evolve at the transition. We conclude that the imperfect nesting between hole and electron pockets explains rather well the formation of gaps and residual metallic droplets in the AFM phase, provided the relative parity of the different bands is taken into account. Beyond this nesting picture, we observe shifts and splittings of numerous bands at the transition. We show that the splittings are surface sensitive and probably not a reliable signature of the magnetic order. On the other hand, the shifts indicate a significant redistribution of the orbital occupations at the transition, especially within the dxz/dyz system, which we discuss

    The Dwarf Irregular Galaxy UGC 7636 Exposed: Stripping At Work In The Virgo Cluster

    Full text link
    We present the results of optical spectroscopy of a newly discovered H II region residing in the H I gas cloud located between the dwarf irregular galaxy UGC 7636 and the giant elliptical galaxy NGC 4472 in the Virgo Cluster. By comparing UGC 7636 with dwarf irregular galaxies in the field, we show that the H I cloud must have originated from UGC 7636 because (1) the oxygen abundance of the cloud agrees with that expected for a galaxy with the blue luminosity of UGC 7636, and (2) M_{H I}/L_B for UGC 7636 becomes consistent with the measured oxygen abundance of the cloud if the H I mass of the cloud is added back into UGC 7636. It is likely that tides from NGC 4472 first loosened the H I gas, after which ram-pressure stripping removed the gas from UGC 7636.Comment: 12 pages, 2 eps figures (AASTeX 5.0); accepted for publication in ApJ Letter

    Integral field spectroscopy with SINFONI of VVDS galaxies. II. The mass-metallicity relation at 1.2 < z < 1.6

    Full text link
    This work aims to provide a first insight into the mass-metallicity (MZ) relation of star-forming galaxies at redshift z~1.4. To reach this goal, we present a first set of nine VVDS galaxies observed with the NIR integral-field spectrograph SINFONI on the VLT. Oxygen abundances are derived from empirical indicators based on the ratio between strong nebular emission-lines (Halpha, [NII]6584 and [SII]6717,6731). Stellar masses are deduced from SED fitting with Charlot & Bruzual (2007) population synthesis models, and star formation rates are derived from [OII]3727 and Halpha emission-line luminosities. We find a typical shift of 0.2-0.4 dex towards lower metallicities for the z~1.4 galaxies, compared to the MZ-relation in the local universe as derived from SDSS data. However, this small sample of eight galaxies does not show any clear correlation between stellar mass and metallicity, unlike other larger samples at different redshift (z~0, z~0.7, and z~2). Indeed, our galaxies lie just under the relation at z~2 and show a small trend for more massive galaxies to be more metallic (~0.1 logarithmic slope). There are two possible explanations to account for these observations. First, the most massive galaxies present higher specific star formation rates when compared to the global VVDS sample which could explain the particularly low metallicity of these galaxies as already shown in the SDSS sample. Second, inflow of metal-poor gas due to tidal interactions could also explain the low metallicity of these galaxies as two of these three galaxies show clear signatures of merging in their velocity fields. Finally, we find that the metallicity of 4 galaxies is lower by ~0.2 to 0.4 dex if we take into account the N/O abundance ratio in their metallicity estimate.Comment: 7 pages, 4 figures, accepted in A&A Comments: Comments: more accurate results with better stellar mass estimate

    Ultrafast filling of an electronic pseudogap in an incommensurate crystal

    Full text link
    We investigate the quasiperiodic crystal (LaS)1.196(VS2) by angle and time resolved photoemission spectroscopy. The dispersion of electronic states is in qualitative agreement with band structure calculated for the VS2 slab without the incommensurate distortion. Nonetheless, the spectra display a temperature dependent pseudogap instead of quasiparticles crossing. The sudden photoexcitation at 50 K induces a partial filling of the electronic pseudogap within less than 80 fs. The electronic energy flows into the lattice modes on a comparable timescale. We attribute this surprisingly short timescale to a very strong electron-phonon coupling to the incommensurate distortion. This result sheds light on the electronic localization arising in aperiodic structures and quasicrystals
    • …
    corecore