589 research outputs found

    Exact ground state Monte Carlo method for Bosons without importance sampling

    Full text link
    Generally ``exact'' Quantum Monte Carlo computations for the ground state of many Bosons make use of importance sampling. The importance sampling is based, either on a guiding function or on an initial variational wave function. Here we investigate the need of importance sampling in the case of Path Integral Ground State (PIGS) Monte Carlo. PIGS is based on a discrete imaginary time evolution of an initial wave function with a non zero overlap with the ground state, that gives rise to a discrete path which is sampled via a Metropolis like algorithm. In principle the exact ground state is reached in the limit of an infinite imaginary time evolution, but actual computations are based on finite time evolutions and the question is whether such computations give unbiased exact results. We have studied bulk liquid and solid 4He with PIGS by considering as initial wave function a constant, i.e. the ground state of an ideal Bose gas. This implies that the evolution toward the ground state is driven only by the imaginary time propagator, i.e. there is no importance sampling. For both the phases we obtain results converging to those obtained by considering the best available variational wave function (the Shadow wave function) as initial wave function. Moreover we obtain the same results even by considering wave functions with the wrong correlations, for instance a wave function of a strongly localized Einstein crystal for the liquid phase. This convergence is true not only for diagonal properties such as the energy, the radial distribution function and the static structure factor, but also for off-diagonal ones, such as the one--body density matrix. From this analysis we conclude that zero temperature PIGS calculations can be as unbiased as those of finite temperature Path Integral Monte Carlo.Comment: 11 pages, 10 figure

    Ground State Properties of Fermi Gases in the Strongly Interacting Regime

    Full text link
    The ground state energies and pairing gaps in dilute superfluid Fermi gases have now been calculated with the quantum Monte Carlo method without detailed knowledge of their wave functions. However, such knowledge is essential to predict other properties of these gases such as density matrices and pair distribution functions. We present a new and simple method to optimize the wave functions of quantum fluids using Green's function Monte Carlo method. It is used to calculate the pair distribution functions and potential energies of Fermi gases over the entire regime from atomic Bardeen-Cooper-Schrieffer superfluid to molecular Bose-Einstein condensation, spanned as the interaction strength is varied.Comment: 4 pages, 4 figure

    Diagrammatic approach in the variational coupled-cluster method

    Full text link
    Recently, as demonstrated by an antiferromagnetic spin-lattice application, we have successfully extended the coupled-cluster method (CCM) to a variational formalism in which two sets of distribution functions are introduced to evaluate Hamiltonian expectation. We calculated these distribution functions by employing an algebraic scheme. Here we present an alternative calculation based on a diagrammatic technique. Similar to the method of correlated-basis functionals (CBF), a generating functional is introduced and calculated by a linked-cluster expansion in terms of diagrams which are categorized and constructed according to a few simple rules and using correlation coefficients and Pauli exclusion principle (or Pauli line) as basic elements. Infinite resummations of diagrams can then be done in a straightforward manner. One such resummation, which includes all so-called ring diagrams and ignores Pauli exclusion principle, reproduces spin-wave theory (SWT). Approximations beyond SWT are also given. Interestingly, one such approximation including all so-called super-ring diagrams by a resummation of infinite Pauli lines in additional to resummations of ring diagrams produces a convergent, precise number for the order-parameter of the one-dimensional isotropic model, contrast to the well-known divergence of SWT. We also discuss the direct relation between our variational CCM and CBF and discuss a possible unification of the two theories.Comment: 18 pages, 9 figure

    Separable form of low-momentum realistic NN interaction

    Full text link
    The low-momentum interaction Vlow-kV_{\text{low-k}} derived from realistic models of the nucleon-nucleon interaction is presented in a separable form. This separable force is supported by a contact interaction in order to achieve the saturation properties of symmetric nuclear matter. Bulk properties of nuclear matter and finite nuclei are investigated for the separable form of Vlow-kV_{\text{low-k}} and two different parameterizations of the contact term. The accuracy of the separable force in Hartree-Fock calculations with respect to the original interaction Vlow-kV_{\text{low-k}} is discussed. For a cutoff parameter Λ\Lambda of 2 fm1^{-1} a representation by a rank 2 separable force yields a sufficient accuracy, while higher ranks are required for larger cut-off parameters. The resulting separable force is parameterized in a simple way to allow for an easy application in other nuclear structure calculations.Comment: 11 pages, 7 figure

    Many-Body Theory of the Electroweak Nuclear Response

    Full text link
    After a brief review of the theoretical description of nuclei based on nonrelativistic many-body theory and realistic hamiltonians, these lectures focus on its application to the analysis of the electroweak response. Special emphasis is given to electron-nucleus scattering, whose experimental study has provided a wealth of information on nuclear structure and dynamics, exposing the limitations of the shell model. The extension of the formalism to the case of neutrino-nucleus interactions, whose quantitative understanding is required to reduce the systematic uncertainty of neutrino oscillation experiments, is also discussed.Comment: Lectures delivered at the DAE-BRNS Workshop on Hadron Physics. Aligarh Muslim University, Aligarh (India), February 18-23, 200

    Ground state properties of a dilute homogeneous Bose gas of hard disks in two dimensions

    Get PDF
    The energy and structure of a dilute hard-disks Bose gas are studied in the framework of a variational many-body approach based on a Jastrow correlated ground state wave function. The asymptotic behaviors of the radial distribution function and the one-body density matrix are analyzed after solving the Euler equation obtained by a free minimization of the hypernetted chain energy functional. Our results show important deviations from those of the available low density expansions, already at gas parameter values x0.001x\sim 0.001. The condensate fraction in 2D is also computed and found generally lower than the 3D one at the same xx.Comment: Submitted to PRA. 7 pages and 8 figure

    Pair Excitations and Vertex Corrections in Fermi Fluids

    Full text link
    Based on an equations--of--motion approach for time--dependent pair correlations in strongly interacting Fermi liquids, we have developed a theory for describing the excitation spectrum of these systems. Compared to the known ``correlated'' random--phase approximation (CRPA), our approach has the following properties: i) The CRPA is reproduced when pair fluctuations are neglected. ii) The first two energy--weighted sumrules are fulfilled implying a correct static structure. iii) No ad--hoc assumptions for the effective mass are needed to reproduce the experimental dispersion of the roton in 3He. iv) The density response function displays a novel form, arising from vertex corrections in the proper polarisation. Our theory is presented here with special emphasis on this latter point. We have also extended the approach to the single particle self-energy and included pair fluctuations in the same way. The theory provides a diagrammatic superset of the familiar GW approximation. It aims at a consistent calculation of single particle excitations with an accuracy that has previously only been achieved for impurities in Bose liquids.Comment: to be published in: JLTP (2007) Proc. Int. Symp. QFS2006, 1-6 Aug. 2006, Kyoto, Japa

    Excited states of quantum many-body interacting systems: A variational coupled-cluster description

    Full text link
    We extend recently proposed variational coupled-cluster method to describe excitation states of quantum many-body interacting systems. We discuss, in general terms, both quasiparticle excitations and quasiparticle-density-wave excitations (collective modes). In application to quantum antiferromagnets, we reproduce the well-known spin-wave excitations, i.e. quasiparticle magnons of spin ±1\pm 1. In addition, we obtain new, spin-zero magnon-density-wave excitations which has been missing in Anserson's spin-wave theory. Implications of these new collective modes are discussed.Comment: 17 pages, 4 figure

    Soluble `Supersymmetric' Quantum XY Model

    Full text link
    We present a `supersymmetric' modification of the dd-dimensional quantum rotor model whose ground state is exactly soluble. The model undergoes a vortex-binding transition from insulator to metal as the rotor coupling is varied. The Hamiltonian contains three-site terms which are relevant: they change the universality class of the transition from that of the (d+1d+1)--- to the dd-dimensional classical XY model. The metallic phase has algebraic ODLRO but the superfluid density is identically zero. Variational wave functions for single-particle and collective excitations are presented.Comment: 12 pages, REVTEX 3.0, IUCM93-00

    Dynamic Many-Body Theory. II. Dynamics of Strongly Correlated Fermi Fluids

    Full text link
    We develop a systematic theory of multi-particle excitations in strongly interacting Fermi systems. Our work is the generalization of the time-honored work by Jackson, Feenberg, and Campbell for bosons, that provides, in its most advanced implementation, quantitative predictions for the dynamic structure function in the whole experimentally accessible energy/momentum regime. Our view is that the same physical effects -- namely fluctuations of the wave function at an atomic length scale -- are responsible for the correct energetics of the excitations in both Bose and Fermi fluids. Besides a comprehensive derivation of the fermion version of the theory and discussion of the approximations made, we present results for homogeneous He-3 and electrons in three dimensions. We find indeed a significant lowering of the zero sound mode in He-3 and a broadening of the collective mode due to the coupling to particle-hole excitations in good agreement with experiments. The most visible effect in electronic systems is the appearance of a ``double-plasmon'' excitation.Comment: submitted to Phys. Rev.
    corecore