1,781 research outputs found

    Emission line models for the lowest-mass core collapse supernovae. I: Case study of a 9 M⊙M_\odot one-dimensional neutrino-driven explosion

    Full text link
    A large fraction of core-collapse supernovae (CCSNe), 30-50%, are expected to originate from the low-mass end of progenitors with MZAMS =8−12 M⊙M_{\rm ZAMS}~= 8-12~M_\odot. However, degeneracy effects make stellar evolution modelling of such stars challenging, and few predictions for their supernova light curves and spectra have been presented. Here we calculate synthetic nebular spectra of a 9 M⊙M_\odot Fe CCSN model exploded with the neutrino mechanism. The model predicts emission lines with FWHM∌\sim1000 km/s, including signatures from each deep layer in the metal core. We compare this model to observations of the three subluminous IIP SNe with published nebular spectra; SN 1997D, SN 2005cs, and SN 2008bk. The prediction of both line profiles and luminosities are in good agreement with SN 1997D and SN 2008bk. The close fit of a model with no tuning parameters provides strong evidence for an association of these objects with low-mass Fe CCSNe. For SN 2005cs, the interpretation is less clear, as the observational coverage ended before key diagnostic lines from the core had emerged. We perform a parameterised study of the amount of explosively made stable nickel, and find that none of these three SNe show the high 58^{58}Ni/56^{56}Ni ratio predicted by current models of electron capture SNe (ECSNe) and ECSN-like explosions. Combined with clear detection of lines from O and He shell material, these SNe rather originate from Fe core progenitors. We argue that the outcome of self-consistent explosion simulations of low-mass stars, which gives fits to many key observables, strongly suggests that the class of subluminous Type IIP SNe is the observational counterpart of the lowest mass CCSNe.Comment: Resubmitted to MNRAS after referee comment

    A two-parameter criterion for classifying the explodability of massive stars by the neutrino-driven mechanism

    Full text link
    Thus far, judging the fate of a massive star (either a neutron star (NS) or a black hole) solely by its structure prior to core collapse has been ambiguous. Our work and previous attempts find a non-monotonic variation of successful and failed supernovae with zero-age main-sequence mass, for which no single structural parameter can serve as a good predictive measure. However, we identify two parameters computed from the pre-collapse structure of the progenitor, which in combination allow for a clear separation of exploding and non-exploding cases with only few exceptions (~1-2.5%) in our set of 621 investigated stellar models. One parameter is M4, defining the normalized enclosed mass for a dimensionless entropy per nucleon of s=4, and the other is mu4 = d(m/M_sun)/d(r/1000 km) at s=4, being the normalized mass-derivative at this location. The two parameters mu4 and M4*mu4 can be directly linked to the mass-infall rate, Mdot, of the collapsing star and the electron-type neutrino luminosity of the accreting proto-NS, L_nue ~ M_ns*Mdot, which play a crucial role in the "critical luminosity" concept for the theoretical description of neutrino-driven explosions as runaway phenomenon of the stalled accretion shock. All models were evolved employing the approach of Ugliano et al. for simulating neutrino-driven explosions in spherical symmetry. The neutrino emission of the accretion layer is approximated by a gray transport solver, while the uncertain neutrino emission of the 1.1 M_sun proto-NS core is parametrized by an analytic model. The free parameters connected to the core-boundary prescription are calibrated to reproduce the observables of Supernova 1987A for five different progenitor models.Comment: 23 pages, 12 figures; accepted by ApJ; revised version considerably enlarged (Fig. 7 and Sect.3.6 added

    Reform des Agrarmarktes

    Full text link

    Ultrafast Electron Dynamics at Cu(111): Response of an Electron Gas to Optical Excitation

    Get PDF
    Time-resolved two-photon photoemission is used to directly investigate the electron dynamics at a Cu(111) surface with 60 fs laser pulses. We find that the time evolution of the photoexcited electron population in the first image state can be described only by solving the optical Bloch equations to properly account for coherence in the excitation process. Our experiments also provide evidence that the dynamics of photoexcited bulk electrons is strongly influenced by hot electron cascades and that the initial relaxation rates are in agreement with Fermi liquid theory

    The adsorbate state specific photochemistry of dioxygen on Pd(111)

    Get PDF
    The ultraviolet‐photochemistry of molecularly adsorbed oxygen on Pd(111) has been studied using pulsed laser light with 6.4 eV photon energy. Three processes occur upon irradiation: desorption of molecular oxygen, conversion between adsorption states, and dissociation to form adsorbed atomic oxygen. By using time‐of‐flight spectroscopy to detect the desorbing molecular oxygen and post‐irradiation thermal desorption spectroscopy (TDS) to characterize the adsorbate state, a detailed picture of the photochemical processes is obtained. The data indicate that the O2 molecules desorbing with low translational energies from the saturated surface as well as the conversion of adsorbed molecules between binding states are induced by the photoinduced build‐up of atomic oxygen on the surface. Analysis of a proposed reaction model reproduces the observed data and yields detailed rates. Polarization analysis indicates that the photochemical processes are initiated by electronic excitations of the substrate

    Chemical efficiency of reactive microflows with heterogeneus catalysis: a lattice Boltzmann study

    Get PDF
    We investigate the effects of geometrical micro-irregularities on the conversion efficiency of reactive flows in narrow channels of millimetric size. Three-dimensional simulations, based upon a Lattice-Boltzmann-Lax-Wendroff code, indicate that periodic micro-barriers may have an appreciable effect on the effective reaction efficiency of the device. Once extrapolated to macroscopic scales, these effects can result in a sizeable increase of the overall reaction efficiency.Comment: 12 pages, 12 figure

    Differences in intestinal size, structure, and function contributing to feed efficiency in broiler chickens reared at geographically distant locations

    Get PDF
    The contribution of the intestinal tract to differences in residual feed intake (RFI) has been inconclusively studied in chickens so far. It is also not clear if RFI-related differences in intestinal function are similar in chickens raised in different environments. The objective was to investigate differences in nutrient retention, visceral organ size, intestinal morphology, jejunal permeability and expression of genes related to barrier function, and innate immune response in chickens of diverging RFI raised at 2 locations (L1: Austria; L2: UK). The experimental protocol was similar, and the same dietary formulation was fed at the 2 locations. Individual BW and feed intake (FI) of chickens (Cobb 500FF) were recorded from d 7 of life. At 5 wk of life, chickens (L1, n = 157; L2 = 192) were ranked according to their RFI, and low, medium, and high RFI chickens were selected (n = 9/RFI group, sex, and location). RFI values were similar between locations within the same RFI group and increased by 446 and 464 g from low to high RFI in females and males, respectively. Location, but not RFI rank, affected growth, nutrient retention, size of the intestine, and jejunal disaccharidase activity. Chickens from L2 had lower total body weight gain and mucosal enzyme activity but higher nutrient retention and longer intestines than chickens at L1. Parameters determined only at L1 showed increased crypt depth in the duodenum and jejunum and enhanced paracellular permeability in low vs. high RFI females. Jejunal expression of IL1B was lower in low vs. high RFI females at L2, whereas that of TLR4 at L1 and MCT1 at both locations was higher in low vs. high RFI males. Correlation analysis between intestinal parameters and feed efficiency metrics indicated that feed conversion ratio was more correlated to intestinal size and function than was RFI. In conclusion, the rearing environment greatly affected intestinal size and function, thereby contributing to the variation in chicken RFI observed across locations

    Ultraviolet‐laser induced dissociation and desorption of water adsorbed on Pd(111)

    Get PDF
    Ultraviolet‐laser irradiation (6.4 eV and 5.0 eV) of the first layer of water adsorbed on a Pd(111) surface at 90 K leads to desorption of H2O and to conversion of the adsorbed state as manifested in the thermal desorption spectra. The latter effect is attributed to photodissociation of water on the surface. Time‐of‐flight measurements show that water molecules desorb with the same translational energy of about 600 K for both photon energies. While desorption is suppressed with adsorbed multilayers, conversion within the first layer still proceeds

    Femtosecond time-resolved photoemission of electron dynamics in surface Rydberg states

    Get PDF
    Femtosecond time-resolved photoelectron spectroscopy provides a unique tool to study the dynamics of optically excited electrons at surfaces directly in the time domain. We present a new model for two-photon photoelectron spectroscopy from surface and image potential (or Rydberg) states which is based on density matrix theory. The formalism accounts for the influence of both energy and phase relaxation on experimental spectra and thus permits the study of the nature of inelastic and elastic scattering processes at surfaces in more detail. The analysis of experimental data employing the proposed model reveals a new mechanism for optical excitation of electrons to normally unoccupied states at surfaces which is feasible due to the influence of electronic dephasing. We discuss the nature of different relaxation channels with respect to our studies of image state dynamics on the bare and Xe or Kr covered Cu(111) surfaces

    Small Force, Big Impact: Next Generation Organ-on-a-Chip Systems Incorporating Biomechanical Cues

    Get PDF
    Mechanobiology-on-a-chip is a growing field focusing on how mechanical inputs modulate physico-chemical output in microphysiological systems. It is well known that biomechanical cues trigger a variety of molecular events and adjustment of mechanical forces is therefore essential for mimicking in vivo physiologies in organon-a-chip technology. Biomechanical inputs in organ-on-a-chip systems can range from variations in extracellular matrix type and stiffness and applied shear stresses to active stretch/strain or compression forces using integrated flexible membranes. The main advantages of these organ-on-a-chip systems are therefore (a) the control over spatiotemporal organization of in vivo-like tissue architectures, (b) the ability to precisely control the amount, duration and intensity of the biomechanical stimuli, and (c) the capability of monitoring in real time the effects of applied mechanical forces on cell, tissue and organ functions. Consequently, over the last decade a variety of microfluidic devices have been introduced to recreate physiological microenvironments that also account for the influence of physical forces on biological functions. In this review we present recent advances in mechanobiological lab-on-a-chip systems and report on lessons learned from these current mechanobiological models. Additionally, future developments needed to engineer next-generation physiological and pathological organ-on-a-chip models are discussed
    • 

    corecore