12 research outputs found

    The Myxococcus xanthus Two-Component System CorSR Regulates Expression of a Gene Cluster Involved in Maintaining Copper Tolerance during Growth and Development

    Get PDF
    Myxococcus xanthus is a soil-dwelling member of the δ–Proteobacteria that exhibits a complex developmental cycle upon starvation. Development comprises aggregation and differentiation into environmentally resistant myxospores in an environment that includes fluctuations in metal ion concentrations. While copper is essential for M. xanthus cells because several housekeeping enzymes use it as a cofactor, high copper concentrations are toxic. These opposing effects force cells to maintain a tight copper homeostasis. A plethora of paralogous genes involved in copper detoxification, all of which are differentially regulated, have been reported in M. xanthus. The use of in-frame deletion mutants and fusions with the reporter gene lacZ has allowed the identification of a two-component system, CorSR, that modulates the expression of an operon termed curA consisting of nine genes whose expression slowly increases after metal addition, reaching a plateau. Transcriptional regulation of this operon is complex because transcription can be initiated at different promoters and by different types of regulators. These genes confer copper tolerance during growth and development. Copper induces carotenoid production in a ΔcorSR mutant at lower concentrations than with the wild-type strain due to lack of expression of a gene product resembling subunit III of cbb3-type cytochrome c oxidase. This data may explain why copper induces carotenoid biosynthesis at suboptimal rather than optimal growth conditions in wild-type strains.This work has been funded by the Spanish Government (grants CSD2009-00006 and BFU2012-33248, 70% funded by FEDER). This work was also supported by the National Institute of General Medical Science of the National Institutes of Health under award number R01GM095826 to LJS, and by the National Science Foundation under award number MCB0742976 to LJS. JMD and JP received a fellowship from Junta de Andalucía to do some work at University of Georgia

    Coupling of protein localization and cell movements by a dynamically localized response regulator in Myxococcus xanthus

    Get PDF
    Myxococcus xanthus cells harbor two motility machineries, type IV pili (Tfp) and the A-engine. During reversals, the two machineries switch polarity synchronously. We present a mechanism that synchronizes this polarity switching. We identify the required for motility response regulator (RomR) as essential for A-motility. RomR localizes in a bipolar, asymmetric pattern with a large cluster at the lagging cell pole. The large RomR cluster relocates to the new lagging pole in parallel with cell reversals. Dynamic RomR localization is essential for cell reversals, suggesting that RomR relocalization induces the polarity switching of the A-engine. The analysis of RomR mutants shows that the output domain targets RomR to the poles and the receiver domain is essential for dynamic localization. The small GTPase MglA establishes correct RomR polarity, and the Frz two-component system regulates dynamic RomR localization. FrzS localizes with Tfp at the leading pole and relocates in an Frz-dependent manner to the opposite pole during reversals; FrzS and RomR localize and oscillate independently. The Frz system synchronizes these oscillations and thus the synchronous polarity switching of the motility machineries

    The FruA signal transduction protein provides a checkpoint for the temporal co-ordination of intercellular signals in Myxococcus xanthus development

    No full text
    During fruiting body morphogenesis in Myxococcus xanthus, the intercellular C-signal induces aggregation, sporulation and developmental gene expression. To understand how a single signal system may induce temporally separated processes, we have focused on the class II gene, which codes for an essential component in the C-signal transduction pathway. We report that class II is identical to fruA and codes for a DNA binding response regulator. Transcription of fruA is developmentally regulated and depends on the early acting intercellular A- and E-signals. However, fruA transcription is independent of C-signal. Rather, genetic evidence suggests that C-signal controls FruA activity post-translationally. Genetic evidence strongly indicates that FruA is activated by phosphorylation. We propose that C-signalling results in the phosphorylation of FruA, thus activating FruA to interact with downstream targets, In the motility branch of the C-signalling pathway, FruA interacts with the Frz motility system; in the sporulation branch, we show that FruA is required for transcription of the sporulation locus devRS. On the basis of the two levels of control of FruA activity, we propose that FruA serves as a control point for the temporal co-ordination of intercellular signals during M. xanthus development

    Coupling gene expression and multicellular morphogenesis during fruiting body formation in Myxococcus xanthus

    No full text
    A recurring theme in morphogenesis is the coupling of the expression of genes that drive morphogenesis and the morphogenetic process per se . This coupling ensures that gene expression and morphogenesis are carried out in synchrony. Morphogenesis of the spore-filled fruiting bodies in Myxococcus xanthus illustrates this coupling in the construction of a multicellular structure. Fruiting body formation involves two stages: aggregation of cells into mounds and the position-specific sporulation of cells that have accumulated inside mounds. Developmental gene expression propels these two processes. In addition, gene expression in individual cells is adjusted according to their spatial position. Progress in the understanding of the cell surface-associated C-signal is beginning to reveal the framework of an intercellular signalling system that allows the coupling of gene expression and multicellular morphogenesis. Accumulation of the C-signal is tightly regulated and involves transcriptional activation of the csgA gene and proteolysis of the full-length CsgA protein to produce the shorter cell surface-associated 17 kDa C-signal protein. The C-signal induces aggregation, sporulation and developmental gene expression at specific thresholds. The ordered increase in C-signalling levels, in combination with the specific thresholds, allows the C-signal to induce these three processes in the correct temporal order. The contact-dependent C-signal transmission mechanism, in turn, guarantees that C-signalling levels reflect the spatial position of individual cells relative to other cells and, thus, allows the cells to decode their spatial position during morphogenesis. By this mechanism, individual cells can tailor their gene expression profile to one that matches their spatial position. In this scheme, the molecular device that keeps gene expression in individual cells in register with morphogenesis is the C-signalling system, and the morphological structure, which is assessed, is the spatial position of individual cells relative to that of other cells

    HthA, a putative DNA binding protein, and HthB are important for fruiting body morphogenesis in Myxococcus xanthus.

    No full text
    In response to starvation, Myxococcus xanthus initiates a developmental programme that results in the formation of spore-filled multicellular fruiting bodies. Fruiting body formation depends on the temporal and spatial coordination of aggregation and sporulation and involves temporally and spatially coordinated changes in gene expression. This paper reports the identification of two genes, hthA and hthB, that are important for fruiting body formation. hthA and hthB are co-transcribed, and transcription of the two genes decreases strongly during development. Loss of HthA and HthB function results in delayed aggregation, a reduction in the level of sporulation, and abnormal developmental gene expression. Extracellular complementation experiments showed that the developmental defects caused by loss of HthA and HthB function are not due to the inability to synthesize an intercellular signal required for fruiting body formation. HthA, independent of HthB, is required for aggregation. HthB, alone or in combination with HthA, is required for sporulation. HthA is predicted to contain a C-terminal helix-turn-helix DNA-binding domain. Intriguingly, the N-terminal part of HthA does not exhibit significant amino acid similarity to proteins in the databases. The HthB protein lacks homologues in the databases. The results suggest that HthA is a novel DNA-binding protein, which regulates transcription of genes important for aggregation, and that HthB, alone or in combination with HthA, stimulates sporulation

    SdeK, a Histidine Kinase Required for Myxococcus xanthus Development

    No full text
    The sdeK gene is essential to the Myxococcus xanthus developmental process. We reported previously, based on sequence analysis (A. G. Garza, J. S. Pollack, B. Z. Harris, A. Lee, I. M. Keseler, E. F. Licking, and M. Singer, J. Bacteriol. 180:4628–4637, 1998), that SdeK appears to be a histidine kinase. In the present study, we have conducted both biochemical and genetic analyses to test the hypothesis that SdeK is a histidine kinase. An SdeK fusion protein containing an N-terminal polyhistidine tag (His-SdeK) displays the biochemical characteristics of a histidine kinase. Furthermore, histidine 286 of SdeK, the putative site of phosphorylation, is required for both in vitro and in vivo protein activity. The results of these assays have led us to conclude that SdeK is indeed a histidine kinase. The developmental phenotype of a ΔsdeK1 strain could not be rescued by codevelopment with wild-type cells, indicating that the defect is not due to the mutant's inability to produce an extracellular signal. Furthermore, the ΔsdeK1 mutant was found to produce both A- and C-signal, based on A-factor and codevelopment assays with a csgA mutant, respectively. The expression patterns of several Tn5lacZ transcriptional fusions were examined in the ΔsdeK1-null background, and we found that all C-signal-dependent fusions assayed also required SdeK for full expression. Our results indicate that SdeK is a histidine kinase that is part of a signal transduction pathway which, in concert with the C-signal transduction pathway, controls the activation of developmental-gene expression required to progress past the aggregation stage
    corecore