248 research outputs found

    Computational identification of signalling pathways in Plasmodium falciparum

    Get PDF
    Malaria is one of the world’s most common and serious diseases causing death of about 3 million people each year. Its most severe occurrence is caused by the protozoan Plasmodium falciparum. Reports have shown that the resistance of the parasite to existing drugs is increasing. Therefore, there is a huge and urgent need to discover and validate new drug or vaccine targets to enable the development of new treatments for malaria. The ability to discover these drug or vaccine targets can only be enhanced from our deep understanding of the detailed biology of the parasite, for example how cells function and how proteins organize into modules such as metabolic, regulatory and signal transduction pathways. It has been noted that the knowledge of signalling transduction pathways in Plasmodium is fundamental to aid the design of new strategies against malaria. This work uses a linear-time algorithm for finding paths in a network under modified biologically motivated constraints. We predicted several important signalling transduction pathways in Plasmodium falciparum. We have predicted a viable signalling pathway characterized in terms of the genes responsible that may be the PfPKB pathway recently elucidated in Plasmodium falciparum. We obtained from the FIKK family, a signal transduction pathway that ends up on a chloroquine resistance marker protein, which indicates that interference with FIKK proteins might reverse Plasmodium falciparum from resistant to sensitive phenotype. We also proposed a hypothesis that showed the FIKK proteins in this pathway as enabling the resistance parasite to have a mechanism for releasing chloroquine (via an efflux process). Furthermore, we also predicted a signalling pathway that may have been responsible for signalling the start of the invasion process of Red Blood Cell (RBC) by the merozoites. It has been noted that the understanding of this pathway will give insight into the parasite virulence and will facilitate rational vaccine design against merozoites invasion. And we have a host of other predicted pathways, some of which have been used in this work to predict the functionality of some proteins

    Estimating novel potential drug targets of Plasmodium falciparum by analysing the metabolic network of knock-out strains in silico

    Get PDF
    Malaria is one of the world’s most common and serious diseases causing death of about 3 million people each year. Its most severe occurrence is caused by the protozoan Plasmodium falciparum. Biomedical research could enable treating the disease by effectively and specifically targeting essential enzymes of this parasite. However, the parasite has developed resistance to existing drugsmaking it indispensable to discover new drugs. We have established a simple computational tool which analyses the topology of the metabolic network of P. falciparum to identify essential enzymes as possible drug targets.Weinvestigated the essentiality of a reaction in the metabolic network by deleting (knocking-out) such a reaction in silico. The algorithmselected neighbouring compounds of the investigated reaction that had to be produced by alternative biochemical pathways. Using breadth first searches, we tested qualitatively if these products could be generated by reactions that serve as potential deviations of the metabolic flux. With this we identified 70 essential reactions. Our results were compared with a comprehensive list of 38 targets of approved malaria drugs. When combining our approach with an in silico analysis performed recently [Yeh, I., Hanekamp, T., Tsoka, S., Karp, P.D., Altman, R.B., 2004. Computational analysis of Plasmodium falciparum metabolism: organizing genomic information to facilitate drug discovery. Genome Res. 14, 917–924] we could improve the precision of the prediction results. Finally we present a refined list of 22 new potential candidate targets for P. falciparum, half of which have reasonable evidence to be valid targets against micro-organisms and cancer

    An in silico Approach to Detect Efficient Malaria Drug Targets to Combat the Malaria Resistance Problem

    Get PDF
    Resistance to malaria drugs is a major challenging problem in most parts of the world especially in the African continent where about ninety per cent of malaria cases occur. As a response to this alarming problem, the World Health Organisation (W.H.O) recommends that all countries experiencing resistance to conventional monotherapies, such as chloroquine, amodiaquine or sulfadoxine–pyrimethamine, should use combination therapies [1]. Therefore there is a need to discover new drug targets that are able to target the malarial parasite at distinct pathways for an efficient malaria drug. In this paper, we presented a machine-learning tool which is able to identify novel drug targets from the metabolic network of Plasmodium falciparum. With our tool we identified among others 19 drug targets confirmed from literature which we analyzed further with a sophisticated gene expression analysis tool. Our data was clustered using common distance similarity measurements and hierarchical clustering to propose a profound combination of drug targets. Our result suggests that two or more enzymatic reactions from the list of our drug targets which span across about ten pathways (Table 2) could be combined to target at distinct time points in the parasite's intraerythrocytic developmental cycle to detect efficient malaria drug target combination

    SPECIFIC TRAINING CAN IMPROVE SENSORIMOTOR CONTROL IN TYPE 2 DIABETIC PATIENTS

    Get PDF
    Diabetes mellitus often is associated with proprioceptive and sensory deficits as a result of distal diabetic polyneuropathy (DPN). The aim of this prospective controlled longitudinal trial was to evaluate a specific sport intervention program regarding sensorimotor capabilities in type 2 diabetic patients compared to healthy controls. A higher incidence of fall-related injuries is given in the literature (Allet et al.2008; Allet et al 2009)

    PLANTAR PRESSURE MEASUREMENTS IN A SOCCER SHOE: CHARACTERIZATION OF SOCCER SPECIFIC MOVEMENTS AND EFFECTS AFTER SIX WEEKS OF AGING

    Get PDF
    The purposes of the study were (i) to characterize in-shoe pressure distribution (PD) measurements during soccer specific movements, (ii) to describe the changes on (PD) after six weeks of aging. 21 experienced male subjects participated in the study. Four different movements (run, cut, sprint and goal shot) were measured on a red cinder surface before and after six weeks of aging. Results showed specific loading characteristics for each movement: Compared to running, the medial part of the foot in cutting, the forefoot in sprinting and the lateral part in kicking were predominantly loaded. Peak pressures increased over 10% after six weeks of use in some high-load areas. Attention should be paid to sprinting and cutting with respect to overuse injuries. Sockliners should be exchanged on a regular basis to maintain a certain amount of cushioning

    Nucleosome repositioning during differentiation of a human myeloid leukemia cell line

    Get PDF
    Cell differentiation is associated with changes in chromatin organization and gene expression. In this study, we examine chromatin structure following differentiation of the human myeloid leukemia cell line (HL-60/S4) into granulocytes with retinoic acid (RA) or into macrophage with phorbol ester (TPA). We performed ChIP-seq of histone H3 and its modifications, analyzing changes in nucleosome occupancy, nucleosome repeat length, eu-/heterochromatin redistribution and properties of epichromatin (surface chromatin adjacent to the nuclear envelope). Nucleosome positions changed genome-wide, exhibiting a specific class of alterations involving nucleosome loss in extended (∼1kb) regions, pronounced in enhancers and promoters. Genes that lost nucleosomes at their promoters showed a tendency to be upregulated. On the other hand, nucleosome gain did not show simple effects on transcript levels. The average genome-wide nucleosome repeat length (NRL) did not change significantly with differentiation. However, we detected an approximate 10 bp NRL decrease around the haematopoietic transcription factor (TF) PU.1 and the architectural protein CTCF, suggesting an effect on NRL proximal to TF binding sites. Nucleosome occupancy changed in regions associated with active promoters in differentiated cells, compared with untreated HL-60/S4 cells. Epichromatin regions revealed an increased GC content and high nucleosome density compared with surrounding chromatin. Epichromatin showed depletion of major histone modifications and revealed enrichment with PML body-associated genes. In general, chromatin changes during HL-60/S4 differentiation appeared to be more localized to regulatory regions, compared with genome-wide changes among diverse cell types studied elsewhere

    Towards understanding the myometrial physiome: approaches for the construction of a virtual physiological uterus

    Get PDF
    Premature labour (PTL) is the single most significant factor contributing to neonatal morbidity in Europe with enormous attendant healthcare and social costs. Consequently, it remains a major challenge to alleviate the cause and impact of this condition. Our ability to improve the diagnosis and treatment of women most at risk of PTL is, however, actually hampered by an incomplete understanding of the ways in which the functions of the uterine myocyte are integrated to effect an appropriate biological response at the multicellular whole organ system. The level of organization required to co-ordinate labouring uterine contractile effort in time and space can be considered immense. There is a multitude of what might be considered mini-systems involved, each with their own regulatory feedback cycles, yet they each, in turn, will influence the behaviour of a related system. These include, but are not exclusive to, gestational-dependent regulation of transcription, translation, post-translational modifications, intracellular signaling dynamics, cell morphology, intercellular communication and tissue level morphology. We propose that in order to comprehend how these mini-systems integrate to facilitate uterine contraction during labour (preterm or term) we must, in concert with biological experimentation, construct detailed mathematical descriptions of our findings. This serves three purposes: firstly, providing a quantitative description of series of complex observations; secondly, proferring a database platform that informs further testable experimentation; thirdly, advancing towards the establishment of a virtual physiological uterus and in silico clinical diagnosis and treatment of PTL

    Quantitative analysis of chromatin interaction changes upon a 4.3 Mb deletion at mouse 4E2

    Get PDF
    BACKGROUND: Circular chromosome conformation capture (4C) has provided important insights into three dimensional (3D) genome organization and its critical impact on the regulation of gene expression. We developed a new quantitative framework based on polymer physics for the analysis of paired-end sequencing 4C (PE-4Cseq) data. We applied this strategy to the study of chromatin interaction changes upon a 4.3 Mb DNA deletion in mouse region 4E2. RESULTS: A significant number of differentially interacting regions (DIRs) and chromatin compaction changes were detected in the deletion chromosome compared to a wild-type (WT) control. Selected DIRs were validated by 3D DNA FISH experiments, demonstrating the robustness of our pipeline. Interestingly, significant overlaps of DIRs with CTCF/Smc1 binding sites and differentially expressed genes were observed. CONCLUSIONS: Altogether, our PE-4Cseq analysis pipeline provides a comprehensive characterization of DNA deletion effects on chromatin structure and function

    Foot pressure distribution during walking in young and old adults

    Get PDF
    BACKGROUND: Measurement of foot pressure distribution (FPD) is clinically useful for evaluation of foot and gait pathologies. The effects of healthy aging on FPD during walking are not well known. This study evaluated FPD during normal walking in healthy young and elderly subjects. METHODS: We studied 9 young (30 ± 5.2 years), and 6 elderly subjects (68.7 ± 4.8 years). FPD was measured during normal walking speed using shoe insoles with 99 capacitive sensors. Measured parameters included gait phase characteristics, mean and maximum pressure and force, and relative load. Time-series measurements of each variable for all sensors were grouped into 9 anatomical masks. RESULTS: Elderly subjects had lower normalized maximum pressure for the medial and lateral calcaneal masks, and for all medial masks combined. In the medial calcaneus mask, the elderly group also had a lower absolute maximum and lower mean and normalized mean pressures and forces, compared to young subjects. Elderly subjects had lower maximum force and normalized maximum force and lower mean force and normalized mean forces in the medial masks as well. CONCLUSION: FPD differences between the young and elderly groups were confined to the calcaneus and hallux regions and to the medial side of the foot. In elderly subjects, weight bearing on the lateral side of the foot during heel touch and toe-off phases may affect stability during walking
    • …
    corecore