1,477 research outputs found

    Radio propagation through solar and other extraterrestrial ionized media

    Get PDF
    The present S- and X-band communications needs in deep space are addressed to illustrate the aspects which are affected by propagation through extraterrestrial plasmas. The magnitude, critical threshold, and frequency dependence of some eight propagation effects for an S-band propagation path passing within 4 solar radii of the Sun are described. The theory and observation of propagation in extraterrestrial plasmas are discussed and the various plasma states along a near solar propagation path are illustrated. Classical magnetoionic theory (cold anisotropic plasma) is examined for its applicability to the path in question. The characteristics of the plasma states found along the path are summarized and the errors in some of the standard approximations are indicated. Models of extraterrestrial plasmas are included. Modeling the electron density in the solar corona and solar wind, is emphasized but some cursory information on the terrestrial planets plus Jupiters is included

    The search for extraterrestrial intelligence: Telecommunications technology

    Get PDF
    Efforts to discover evidence of intelligent extraterrestrial life have become not only feasible, but respectable. Fledgling observational projects have begun that will use state-of-the-art hardware to develop sophisticated receiving and data processing systems. The rationale behind the Search for Extraterrestrial Intelligence, the manner in which the program is taking shape, and the implications for telecommunications are described. It is concluded that the breadth of technological development required for the detection of signals from galactic brethren has particular relevance for the future of telecommunications in Earth oriented uses

    Potential for cogeneration of heat and electricity in California industry, phase 2

    Get PDF
    The nontechnical issues of industrial cogeneration for 12 California firms were analyzed under three categories of institutional settings: (1) industrial ownership without firm sales of power; (2) industrial ownership with firm sales of power; and (3) utility or third party ownership. Institutional issues were analyzed from the independent viewpoints of the primary parties of interest: the industrial firms, the electric utilities and the California Public utilities Commission. Air quality regulations and the agencies responsible for their promulgation were examined, and a life cycle costing model was used to evaluate the economic merits of representative conceptual cogeneration systems at these sites. Specific recommendations were made for mitigating measures and regulatory action relevant to industrial cogeneration in California

    Simultaneous EUV and X-ray variability of NGC 4051

    Get PDF
    We present a flux variability study of simultaneous RXTE and EUVE observations of the highly variable Seyfert galaxy NGC4051. We find a strong correlation between variability in the EUV and medium energy X-ray bands,indicating that both are sampling the same power-law continuum. The lag between the two bands is less than 20 ks and, depending on model assumptions, may be <1 ks. We examine the consequences of such a small lag in the context of simple Comptonisation models for the production of the power-law continuum. A lag of <1 ks implies that the size of the Comptonising region is less than 20 Schwarzschild radii for a black hole of mass >1E6 solar masses.Comment: 8 pages, accepted for publication in MNRA

    Telecommunications systems design techniques handbook

    Get PDF
    Handbook presents design and analysis of tracking, telemetry, and command functions utilized in these systems with particular emphasis on deep-space telecommunications. Antenna requirements are also discussed. Handbook provides number of tables outlining various performance criteria. Block diagrams and performance charts are also presented

    Multi-band optical micro-variability observations of BL Lacertae

    Get PDF
    We have observed BL Lacertae in the B, R and I bands for 2 nights in July, 1999, and 3 nights in July, 2001. The observations resulted in almost evenly sampled light curves, with an average sampling interval of ~5 min. The source is significantly variable in all bands. On average, the variability amplitude increases from ~5% in the I band, to ~5.5% in the R and ~6.5% in the B band light curves. The rising and decaying time scales are comparable within each band, but they increase from the B, to R and I band light curves. The optical power spectrum shows a red noise component with a slope of ~ -2. Cross-correlation analysis shows that in most cases the delay between the variations in the B and I band light curves is less than ~ 0.4 hrs. The cross-correlation functions are asymmetric, implying complex delays of the I band variations with respect to the B band variations. Furthermore, in one case we find that the I band variations are significantly delayed (by ~0.2 hrs) with respect to the B band variations. We also detect significant spectral variations: the spectrum becomes steeper as the flux increases, and the flattest spectral index corresponds to the maximum B band flux. Our results imply that the fast, intra-night variations of the source correspond to perturbations of different regions in the jet which cause localized injections of relativistic particles on time scales much sorter that the average sampling interval of the light curves. The variations are controlled by the cooling and light crossing time scales, which are probably comparable.Comment: Accepted for publication in A&

    The long-term optical spectral variability of BL Lacertae

    Full text link
    We present the results from a study of the long-term optical spectral variations of BL Lacertae, using the long and well-sampled B and R-band light curves of the Whole Earth Blazar Telescope (WEBT) collaboration, binned on time intervals of 1 day. The relation between spectral slope and flux (the spectrum gets bluer as the source flux increases) is well described by a power-law model, although there is significant scatter around the best-fitting model line. To some extent, this is due to the spectral evolution of the source (along well-defined loop-like structures) during low-amplitude events, which are superimposed on the major optical flares, and evolve on time scales of a few days. The "bluer-when-brighter" mild chromatism of the long-term variations of the source can be explained if the flux increases/decreases faster in the B than in the R band. The B and R-band variations are well correlated, with no significant, measurable delays larger than a few days. On the other hand, we find that the spectral variations lead those in the flux light curves by ~ 4 days. Our results can be explained in terms of Doppler factor variations due to changes in the viewing angle of a curved and inhomogeneous emitting jet.Comment: 7 pages, 5 figures, accepted for publication in A&

    The swansong in context: long-timescale X-ray variability of NGC 4051

    Full text link
    On 9-11 May 1998, the highly-variable, low luminosity Seyfert 1 galaxy NGC4051 was observed in an unusual low flux state by BeppoSAX (Guainazzi et al. 1998) RXTE and EUVE. We present fits of the 4-15 keV RXTE spectrum and BeppoSAX MECS spectrum obtained during this observation, which are consistent with the interpretation that the source had switched off, leaving only the spectrum of pure reflection from distant cold matter. We place this result in context by showing the X-ray lightcurve of NGC4051 obtained by our RXTE monitoring campaign over the past two and a half years, which shows that the low state lasted for ~150 days before the May observations (implying that the reflecting material is > 10^17 cm from the continuum source) and forms part of a lightcurve showing distinct variations in long-term average flux over timescales > months. We show that the long-timescale component to X-ray variability is intrinsic to the primary continuum and is probably distinct from the variability at shorter timescales, possibly associated with variations in the accretion flow of matter onto the central black hole. As the source approaches the low state, the variability process becomes non-linear. NGC4051 may represent a microcosm of all X-ray variability in radio quiet active galactic nuclei (AGNs), displaying in a few years a variety of flux states and variability properties which more luminous AGNs may pass through on timescales of decades to thousands of years.Comment: 5 pages, accepted for publication in MNRA
    corecore