1,353 research outputs found

    Microbial symbionts of parasitoids

    Get PDF
    Parasitoids depend on other insects for the development of their offspring. Their eggs are laid in or on a host insect that is consumed during juvenile development. Parasitoids harbor a diversity of microbial symbionts including viruses, bacteria, and fungi. In contrast to symbionts of herbivorous and hematophagous insects, parasitoid symbionts do not provide nutrients. Instead, they are involved in parasitoid reproduction, suppression of host immune responses, and manipulation of the behavior of herbivorous hosts. Moreover, recent research has shown that parasitoid symbionts such as polydnaviruses may also influence plant-mediated interactions among members of plant-associated communities at different trophic levels, such as herbivores, parasitoids, and hyperparasitoids. This implies that these symbionts have a much more extended phenotype than previously thought. This review focuses on the effects of parasitoid symbionts on direct and indirect species interactions and the consequences for community ecology

    inducibility, severity and success of egg-killing leaf necrosis depends on plant genotype and egg clustering

    Get PDF
    Plants employ various defences killing the insect attacker in an early stage. Oviposition by cabbage white butterflies (Pieris spp.) on brassicaceous plants, including Brassica nigra, induces a hypersensitive response (HR) - like leaf necrosis promoting desiccation of eggs. To gain a deeper insight into the arms race between butterflies and plants, we conducted field and greenhouse experiments using different B. nigra genotypes. We investigated variation in HR and consequent survival of P. brassicae egg clusters. Impact of egg density, distribution type and humidity on HR formation and egg survival was tested. HR differed among plant genotypes as well as plant individuals. Egg density per plant did not affect HR formation. Remarkably, egg survival did not depend on the formation of HR, unless butterflies were forced to lay single eggs. Larval hatching success from single eggs was lower on plants expressing HR. This may be due to increased vulnerability of single eggs to low humidity conditions at necrotic leaf sites. We conclude that effectiveness of HR-like necrosis in B. nigra varies with plant genotype, plant individual and the type of egg laying behaviour (singly or clustered). By clustering eggs, cabbage white butterflies can escape the egg-killing, direct plant defence trait

    Evaluation of Two Implant Strategies, Revalor- XH or a Combination Revalor- IH/Revalor- 200 on Heifer Growth Performance and Carcass Characteristics

    Get PDF
    A commercial feedlot trial examined effects of two implant strategies (Revalor- IH on d 1 and re- implanted with Revalor- 200 on d 101 or Revalor- XH on d 1) on growth performance and carcass characteristics of heifers fed 183 days. Th ere were no differences between implant strategies for final body weight, dry matter intake, and average daily gain. Heifers implanted with the combination IH/200 treatment had improved carcassadjusted feed conversion, greater LM area, and lower calculated yield grade compared to heifers implanted with XH. Th e response in growth performance between the two implant strategies suggests that the partiallycoated Revalor- XH implant can be used in place of a more aggressive implant strategy when heifers are fed to similar days

    Hyperparasitoids exploit herbivore-induced plant volatiles during host location to assess host quality and non-host identity

    Get PDF
    Although consumers often rely on chemical information to optimize their foraging strategies, it is poorly understood how top carnivores above the third trophic level find resources in heterogeneous environments. Hyperparasitoids are a common group of organisms in the fourth trophic level that lay their eggs in or on the body of other parasitoid hosts. Such top carnivores use herbivore-induced plant volatiles (HIPVs) to find caterpillars containing parasitoid host larvae. Hyperparasitoids forage in complex environments where hosts of different quality may be present alongside non-host parasitoid species, each of which can develop in multiple herbivore species. Because both the identity of the herbivore species and its parasitization status can affect the composition of HIPV emission, hyperparasitoids encounter considerable variation in HIPVs during host location. Here, we combined laboratory and field experiments to investigate the role of HIPVs in host selection of hyperparasitoids that search for hosts in a multi-parasitoid multi-herbivore context. In a wild Brassica oleracea-based food web, the hyperparasitoid Lysibia nana preferred HIPVs emitted in response to caterpillars parasitized by the gregarious host Cotesia glomerata over the non-host Hyposoter ebeninus. However, no plant-mediated discrimination occurred between the solitary host C. rubecula and the non-host H. ebeninus. Under both laboratory and field conditions, hyperparasitoid responses were not affected by the herbivore species (Pieris brassicae or P. rapae) in which the three primary parasitoid species developed. Our study shows that HIPVs are an important source of information within multitrophic interaction networks allowing hyperparasitoids to find their preferred hosts in heterogeneous environments

    QED for a Fibrillar Medium of Two-Level Atoms

    Get PDF
    We consider a fibrillar medium with a continuous distribution of two-level atoms coupled to quantized electromagnetic fields. Perturbation theory is developed based on the current algebra satisfied by the atomic operators. The one-loop corrections to the dispersion relation for the polaritons and the dielectric constant are computed. Renormalization group equations are derived which demonstrate a screening of the two-level splitting at higher energies. Our results are compared with known results in the slowly varying envelope and rotating wave approximations. We also discuss the quantum sine-Gordon theory as an approximate theory.Comment: 32 pages, 4 figures, uses harvmac and epsf. In this revised version, infra-red divergences are more properly handle

    Gyromagnetic Factors and Atomic Clock Constraints on the Variation of Fundamental Constants

    Get PDF
    We consider the effect of the coupled variations of fundamental constants on the nucleon magnetic moment. The nucleon g-factor enters into the interpretation of the measurements of variations in the fine-structure constant, alpha, in both the laboratory (through atomic clock measurements) and in astrophysical systems (e.g. through measurements of the 21 cm transitions). A null result can be translated into a limit on the variation of a set of fundamental constants, that is usually reduced to alpha. However, in specific models, particularly unification models, changes in alpha are always accompanied by corresponding changes in other fundamental quantities such as the QCD scale, Lambda_QCD. This work tracks the changes in the nucleon g-factors induced from changes in Lambda_QCD and the light quark masses. In principle, these coupled variations can improve the bounds on the variation of alpha by an order of magnitude from existing atomic clock and astrophysical measurements. Unfortunately, the calculation of the dependence of g-factors on fundamental parameters is notoriously model-dependent.Comment: 35 pages, 3 figures. Discussions of the effects of the polarization of the non-valence nucleons, spin-spin interaction and nuclear radius on the nuclear g-factor are added. References added. Matches published versio

    Dicke effect in a quantum wire with side-coupled quantum dots

    Get PDF
    A system of an array of side-coupled quantum-dots attached to a quantum wire is studied theoretically. Transport through the quantum wire is investigated by means of a noninteracting Anderson tunneling Hamiltonian. Analytical expressions of the transmission probability and phase are given. The transmission probability shows an energy spectrum with forbidden and allowed bands that depends on the up-down asymmetry of the system. In up-down symmetry only the gap survives, and in up-down asymmetry an allowed band is formed. We show that the allowed band arises by the indirect coupling between the up and down quantum dots. In addition, the band edges can be controlled by the degree of asymmetry of the quantum dots. We discuss the analogy between this phenomenon with the Dicke effect in optics.Comment: 11 pages, 5 figures. To appear in Physica

    The Phantom Bounce: A New Oscillating Cosmology

    Full text link
    An oscillating universe cycles through a series of expansions and contractions. We propose a model in which ``phantom'' energy with p<ρp < -\rho grows rapidly and dominates the late-time expanding phase. The universe's energy density is so large that the effects of quantum gravity are important at both the beginning and the end of each expansion (or contraction). The bounce can be caused by high energy modifications to the Friedmann equation, which make the cosmology nonsingular. The classic black hole overproduction of oscillating universes is resolved due to their destruction by the phantom energy.Comment: Four pages, one figure. V3: version to appear in JCA

    Enhanced Transmission of Light and Particle Waves through Subwavelength Nanoapertures by Far-Field Interference

    Full text link
    Subwavelength aperture arrays in thin metal films can enable enhanced transmission of light and matter (atom) waves. The phenomenon relies on resonant excitation and interference of the plasmon or matter waves on the metal surface. We show a new mechanism that could provide a great resonant and nonresonant transmission enhancement of the light or de Broglie particle waves passed through the apertures not by the surface waves, but by the constructive interference of diffracted waves (beams generated by the apertures) at the detector placed in the far-field zone. In contrast to other models, the mechanism depends neither on the nature (light or matter) of the beams (continuous waves or pulses) nor on material and shape of the multiple-beam source (arrays of 1-D and 2-D subwavelength apertures, fibers, dipoles or atoms). The Wood anomalies in transmission spectra of gratings, a long standing problem in optics, follow naturally from the interference properties of our model. The new point is the prediction of the Wood anomaly in a classical Young-type two-source system. The new mechanism could be interpreted as a non-quantum analog of the superradiance emission of a subwavelength ensemble of atoms (the light power and energy scales as the number of light-sources squared, regardless of periodicity) predicted by the well-known Dicke quantum model.Comment: Revised version of MS presented at the Nanoelectronic Devices for Defense and Security (NANO-DDS) Conference, 18-21 June, 2007, Washington, US
    corecore