4,368 research outputs found
Opportunities for Producing Table Grapes in Egypt for the Export Market: A Decision Case Study
The Barakat Fruit Farm desires to increase their share of the exportable grape market in Egypt. Unfortunately, the grape cultivars currently cultivated by the farm bear fruit after the early market window to the European Union when prices are high. An analysis of the company, competition, consumer, market channel, and conditions, provides insight into possible solutions to the challenges faced by the farm management. Designed for undergraduate classroom use, this case encourages students to think outside of traditional production techniques to arrive at solutions that are viable from both crop culture and financial standpoints.Decision case, horticulture, agriculture economics, grape production, Production Economics, Teaching/Communication/Extension/Profession, Q10, Q11,
Exciton dynamics and non-linearities in 2D-hybrid organic perovskites
Due to their high potentiality for photovoltaic applications or coherent
light sources, a renewed interest in hybrid organic perovskites has emerged for
few years. When they are arranged in two dimensions, these materials can be
considered as hybrids quantum wells. One consequence of the unique structure of
2D hybrid organic perovskites is a huge exciton binding energy that can be
tailored through chemical engineering. We present experimental investigations
of the exciton nonlinearities by means of femtosecond pump-probe spectroscopy.
The exciton dynamics is fitted with a bi-exponential decay with a free exciton
life-time of ~100 ps. Moreover, an ultrafast intraband relaxation (< 150 fs) is
also reported. Finally, the transient modification of the excitonic line is
analysed through the momenta analysis and described in terms of reduction of
the oscillator strength and linewidth broadening. We show that excitonic
non-linearities in 2D hybrid organic perovskites share some behaviours of
inorganic semiconductors despite their huge exciton binding energy
One Year of Alendronate Treatment Lowers Microstructural Stresses Associated with Trabecular Microdamage Initiation
Alendronate, an anti-remodeling agent, is commonly used to treat patients suffering from osteoporosis by increasing bone mineral density. Though fracture risk is lowered, an increase in microdamage accumulation has been documented in patients receiving alendronate, leading to questions about the potentially detrimental effects of remodeling suppression on the local tissue (material) properties. In this study, trabecular bone cores from the distal femur of beagle dogs treated for one year with alendronate, at doses scaled by weight to approximate osteoporotic and Paget's disease treatment doses in humans, were subjected to uniaxial compression to induce microdamage. Tissue level von Mises stresses were computed for alendronate-treated and non-treated controls using finite element analysis and correlated to microdamage morphology. Using a modified version of the Moore and Gibson classification for damage morphology, we determined that the von Mises stress for trabeculae exhibiting severe and linear microcrack patterns was decreased by approximately 25% in samples treated with alendronate compared with non-treated controls (p<0.01), whereas there was no reduction in the von Mises stress state for diffuse microdamage formation. Furthermore, an examination of the architectural and structural characteristics of damaged trabeculae demonstrated that severely damaged trabeculae were thinner, more aligned with the loading axis, and less mineralized than undamaged trabeculae in alendronate-treated samples (p<0.01). Similar relationships with damage morphology were found only with trabecular orientation in vehicle-treated control dogs. These results indicate that changes in bone's architecture and matrix properties associated with one year of alendronate administration reduce trabecular bone's ability to resist the formation of loading-induced severe and linear microcracks, both of which dissipate less energy prior to fracture than does diffuse damage
Gastrointestinal parasite control during prepuberty improves mammary parenchyma development in holstein heifers
Parasitism during development impairs normal growth and delays the onset of puberty through altered hormone profiles, including insulin-like growth factor one (IGF-1).Asmammary
gland development during prepuberty is strongly dependent on IGF-1, we determined if antiparasitic treatment during this stage of growth improved mammary gland development.
One group of Holstein heifers was treated monthly, rotationally with antiparasitic drugs from birth to 70 weeks of age, a second group was untreated. Treated heifer calves had between 56% and 65% less EPG counts than untreated ones. Presence of Ostertagia, Cooperia, Haemonchus and Trichostrongylus was demonstrated. Treatment effectively advanced the onset of puberty and increased IGF-1 levels. At 20, 30, 40 and 70 weeks of age biopsies from the mammary gland were taken and histological sections were prepared and stained with hematoxylin–eosin. Pictures were analyzed to compare parenchyma area in relation to total mammary tissue between groups. Mammary samples from treated heifers had higher ratios of parenchyma/total area than untreated ones. As mammary development during
prepuberty is crucial for mammary performance during lactation, these results add new
evidence to the importance of gastrointestinal parasite control in heifersFil: Perri, Adrián Francisco. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Mejía, Miguel E.. Universidad Nacional del Litoral; ArgentinaFil: Licoff, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Diab, Santiago. University of California; Estados UnidosFil: Formía, Néstor. Universidad Nacional de La Plata; ArgentinaFil: Ornstein, Ana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Becu, Damasia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Lacau Mengido, Isabel M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentin
Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group.
Cancer immunotherapy has transformed the treatment of cancer. However, increasing use of immune-based therapies, including the widely used class of agents known as immune checkpoint inhibitors, has exposed a discrete group of immune-related adverse events (irAEs). Many of these are driven by the same immunologic mechanisms responsible for the drugs\u27 therapeutic effects, namely blockade of inhibitory mechanisms that suppress the immune system and protect body tissues from an unconstrained acute or chronic immune response. Skin, gut, endocrine, lung and musculoskeletal irAEs are relatively common, whereas cardiovascular, hematologic, renal, neurologic and ophthalmologic irAEs occur much less frequently. The majority of irAEs are mild to moderate in severity; however, serious and occasionally life-threatening irAEs are reported in the literature, and treatment-related deaths occur in up to 2% of patients, varying by ICI. Immunotherapy-related irAEs typically have a delayed onset and prolonged duration compared to adverse events from chemotherapy, and effective management depends on early recognition and prompt intervention with immune suppression and/or immunomodulatory strategies. There is an urgent need for multidisciplinary guidance reflecting broad-based perspectives on how to recognize, report and manage organ-specific toxicities until evidence-based data are available to inform clinical decision-making. The Society for Immunotherapy of Cancer (SITC) established a multidisciplinary Toxicity Management Working Group, which met for a full-day workshop to develop recommendations to standardize management of irAEs. Here we present their consensus recommendations on managing toxicities associated with immune checkpoint inhibitor therapy
Use of sonic tomography to detect and quantify wood decay in living trees.
Premise of the studyField methodology and image analysis protocols using acoustic tomography were developed and evaluated as a tool to estimate the amount of internal decay and damage of living trees, with special attention to tropical rainforest trees with irregular trunk shapes.Methods and resultsLiving trunks of a diversity of tree species in tropical rainforests in the Republic of Panama were scanned using an Argus Electronic PiCUS 3 Sonic Tomograph and evaluated for the amount and patterns of internal decay. A protocol using ImageJ analysis software was used to quantify the proportions of intact and compromised wood. The protocols provide replicable estimates of internal decay and cavities for trees of varying shapes, wood density, and bark thickness.ConclusionsSonic tomography, coupled with image analysis, provides an efficient, noninvasive approach to evaluate decay patterns and structural integrity of even irregularly shaped living trees
Vortex Collisions: Crossing or Recombination?
We investigate the collision of two vortex lines moving with viscous dynamics
and driven towards each other by an applied current. Using London theory in the
approach phase we observe a non-trivial vortex conformation producing
anti-parallel segments; their attractive interaction triggers a violent
collision. The collision region is analyzed using the time-dependent
Ginzburg-Landau equation. While we find vortices will always recombine through
exchange of segments, a crossing channel appears naturally through a double
collision process.Comment: 4 pages, 3 figure
Vortex deformation and breaking in superconductors: A microscopic description
Vortex breaking has been traditionally studied for nonuniform critical
current densities, although it may also appear due to nonuniform pinning force
distributions. In this article we study the case of a
high-pinning/low-pinning/high-pinning layered structure. We have developed an
elastic model for describing the deformation of a vortex in these systems in
the presence of a uniform transport current density for any arbitrary
orientation of the transport current and the magnetic field. If is above a
certain critical value, , the vortex breaks and a finite effective
resistance appears. Our model can be applied to some experimental
configurations where vortex breaking naturally exists. This is the case for
YBaCuO (YBCO) low angle grain boundaries and films on vicinal
substrates, where the breaking is experienced by Abrikosov-Josephson vortices
(AJV) and Josephson string vortices (SV), respectively. With our model, we have
experimentally extracted some intrinsic parameters of the AJV and SV, such as
the line tension and compared it to existing predictions based on
the vortex structure.Comment: 11 figures in 13 files; minor changes after printing proof
- …
