3,046 research outputs found

    Spectral density and metal-insulator phase transition in Mott insulators within RDMFT

    Full text link
    We present a method for calculating the spectrum of periodic solids within reduced density matrix functional theory. This method is validated by a detailed comparison of the angular momentum projected spectral density with that of well established many-body techniques, in all cases finding an excellent agreement. The physics behind the pressure induced insulator-metal phase transition in MnO is investigated. The driving mechanism of this transition is identified as increased crystal field splitting with pressure, resulting in a charge redistribution between the Mn ege_g and t2gt_2g symmetry projected states.Comment: arXiv admin note: text overlap with arXiv:0912.111

    Reduced Density Matrix Functional for Many-Electron Systems

    Full text link
    Reduced density matrix functional theory for the case of solids is presented and a new exchange correlation functional based on a fractional power of the density matrix is introduced. We show that compared to other functionals, this produces more accurate results for both finite systems. Moreover, it captures the correct band gap behavior for conventional semiconductors as well as strongly correlated Mott insulators, where a gap is obtained in absence of any magnetic ordering.Comment: 4 figs and 1 tabl

    Enhanced excitonic effects in the energy loss spectra of LiF and Ar at large momentum transfer

    Get PDF
    It is demonstrated that the bootstrap kernel [\onlinecite{sharma11}] for finite values of q{\bf q} crucially depends upon the matrix character of the kernel and gives results of the same good quality as in the q→0{\bf q} \rightarrow 0 limit. The bootstrap kernel is further used to study the electron loss as well as absorption spectra for Si, LiF and Ar for various values of q{\bf q}. The results show that the excitonic effects in LiF and Ar are enhanced for values of q{\bf q} away from the Γ\Gamma-point. The reason for this enhancement is the interaction between the exciton and high energy inter-band electron-hole transitions. This fact is validated by calculating the absorption spectra under the influence of an external electric field. The electron energy loss spectra is shown to change dramatically as a function of q{\bf q}

    Engaging Students Engaging Industry Engaging Enterprise

    Get PDF
    A reflective piece on how a small team of students and academics gained more awareness of their own sense of enterprise and creativity. The case study examines the phases and crisis points of the whole event process and identifies some of the key learning outcomes for all involved
    • …
    corecore