137 research outputs found

    Analytical method for perturbed frozen orbit around an Asteroid in highly inhomogeneous gravitational fields : A first approach

    Get PDF
    This article provides a method for nding initial conditions for perturbed frozen orbits around inhomogeneous fast rotating asteroids. These orbits can be used as reference trajectories in missions that require close inspection of any rigid body. The generalized perturbative procedure followed exploits the analytical methods of relegation of the argument of node and Delaunay normalisation to arbitrary order. These analytical methods are extremely powerful but highly computational. The gravitational potential of the heterogeneous body is rstly stated, in polar-nodal coordinates, which takes into account the coecients of the spherical harmonics up to an arbitrary order. Through the relegation of the argument of node and the Delaunay normalization, a series of canonical transformations of coordinates is found, which reduces the Hamiltonian describing the system to a integrable, two degrees of freedom Hamiltonian plus a truncated reminder of higher order. Setting eccentricity, argument of pericenter and inclination of the orbit of the truncated system to be constant, initial conditions are found, which evolve into frozen orbits for the truncated system. Using the same initial conditions yields perturbed frozen orbits for the full system, whose perturbation decreases with the consideration of arbitrary homologic equations in the relegation and normalization procedures. Such procedure can be automated for the first homologic equation up to the consideration of any arbitrary number of spherical harmonics coefficients. The project has been developed in collaboration with the European Space Agency (ESA)

    Production of trans-Neptunian binaries through chaos-assisted capture

    Full text link
    The recent discovery of binary objects in the Kuiper-belt opens an invaluable window into past and present conditions in the trans-Neptunian part of the Solar System. For example, knowledge of how these objects formed can be used to impose constraints on planetary formation theories. We have recently proposed a binary-object formation model based on the notion of chaos-assisted capture. Here we present a more detailed analysis with calculations performed in the spatial (three-dimensional) three- and four-body Hill approximations. It is assumed that the potential binary partners are initially following heliocentric Keplerian orbits and that their relative motion becomes perturbed as these objects undergo close encounters. First, the mass, velocity, and orbital element distribu- tions which favour binary formation are identified in the circular and elliptical Hill limits. We then consider intruder scattering in the circular Hill four-body problem and find that the chaos-assisted capture mechanism is consistent with observed, apparently randomly distributed, binary mutual orbit inclinations. It also predicts asymmetric distributions of retrograde versus prograde orbits. The time-delay induced by chaos on particle transport through the Hill sphere is analogous to the formation of a resonance in a chemical reaction. Implications for binary formation rates are considered and the 'fine-tuning' problem recently identified by Noll et al. (2007) is also addressed.Comment: submitted to MNRA

    Families of Canonical Transformations by Hamilton-Jacobi-Poincar\'e equation. Application to Rotational and Orbital Motion

    Full text link
    The Hamilton-Jacobi equation in the sense of Poincar\'e, i.e. formulated in the extended phase space and including regularization, is revisited building canonical transformations with the purpose of Hamiltonian reduction. We illustrate our approach dealing with orbital and attitude dynamics. Based on the use of Whittaker and Andoyer symplectic charts, for which all but one coordinates are cyclic in the Hamilton-Jacobi equation, we provide whole families of canonical transformations, among which one recognizes the familiar ones used in orbital and attitude dynamics. In addition, new canonical transformations are demonstrated.Comment: 21 page

    The theory of canonical perturbations applied to attitude dynamics and to the Earth rotation. Osculating and nonosculating Andoyer variables

    Full text link
    The Hamiltonian theory of Earth rotation, known as the Kinoshita-Souchay theory, operates with nonosculating Andoyer elements. This situation parallels a similar phenomenon that often happens (but seldom gets noticed) in orbital dynamics, when the standard Lagrange-type or Delaunay-type planetary equations unexpectedly render nonosculating orbital elements. In orbital mechanics, osculation loss happens when a velocity-dependent perturbation is plugged into the standard planetary equations. In attitude mechanics, osculation is lost when an angular-velocity-dependent disturbance is plugged in the standard dynamical equations for the Andoyer elements. We encounter exactly this situation in the theory of Earth rotation, because this theory contains an angular-velocity-dependent perturbation (the switch from an inertial frame to that associated with the precessing ecliptic of date). While the osculation loss does not influence the predictions for the figure axis of the planet, it considerably alters the predictions for the instantaneous spin-axis' orientation. We explore this issue in great detail

    The Moyal-Lie Theory of Phase Space Quantum Mechanics

    Get PDF
    A Lie algebraic approach to the unitary transformations in Weyl quantization is discussed. This approach, being formally equivalent to the ⋆\star-quantization, is an extension of the classical Poisson-Lie formalism which can be used as an efficient tool in the quantum phase space transformation theory.Comment: 15 pages, no figures, to appear in J. Phys. A (2001

    A new dynamical model for the study of galactic structure

    Full text link
    In the present article, we present a new gravitational galactic model, describing motion in elliptical as well as in disk galaxies, by suitably choosing the dynamical parameters. Moreover, a new dynamical parameter, the S(g) spectrum, is introduced and used, in order to detect islandic motion of resonant orbits and the evolution of the sticky regions. We investigate the regular or chaotic character of motion, with emphasis in the different dynamical models and make an extensive study of the sticky regions of the system. We use the classical method of the Poincare (r-pr) phase plane and the new dynamical parameter of the S(g) spectrum. The LCE is used, in order to make an estimation of the degree of chaos in our galactic model. In both cases, the numerical calculations, suggest that our new model, displays a wide variety of families of regular orbits, compared to other galactic models. In addition to the regular motion, this new model displays also chaotic regions. Furthermore, the extent of the chaotic regions increases, as the value of the flatness parameter b of the model increases. Moreover, our simulations indicate, that the degree of chaos in elliptical galaxies, is much smaller than that in dense disk galaxies. In both cases numerical calculations show, that the degree of chaos increases linearly, as the flatness parameter b increases. In addition, a linear relationship between the critical value of angular momentum and the b parameter if found, in both cases (elliptical and disk galaxies). Some theoretical arguments to support the numerical outcomes are presented. Comparison with earlier work is also made.Comment: Published in New Astronomy journa

    Geometrical Models of the Phase Space Structures Governing Reaction Dynamics

    Get PDF
    Hamiltonian dynamical systems possessing equilibria of saddle×centre×...×centre{saddle} \times {centre} \times...\times {centre} stability type display \emph{reaction-type dynamics} for energies close to the energy of such equilibria; entrance and exit from certain regions of the phase space is only possible via narrow \emph{bottlenecks} created by the influence of the equilibrium points. In this paper we provide a thorough pedagogical description of the phase space structures that are responsible for controlling transport in these problems. Of central importance is the existence of a \emph{Normally Hyperbolic Invariant Manifold (NHIM)}, whose \emph{stable and unstable manifolds} have sufficient dimensionality to act as separatrices, partitioning energy surfaces into regions of qualitatively distinct behavior. This NHIM forms the natural (dynamical) equator of a (spherical) \emph{dividing surface} which locally divides an energy surface into two components (`reactants' and `products'), one on either side of the bottleneck. This dividing surface has all the desired properties sought for in \emph{transition state theory} where reaction rates are computed from the flux through a dividing surface. In fact, the dividing surface that we construct is crossed exactly once by reactive trajectories, and not crossed by nonreactive trajectories, and related to these properties, minimizes the flux upon variation of the dividing surface. We discuss three presentations of the energy surface and the phase space structures contained in it for 2-degree-of-freedom (DoF) systems in the threedimensional space R3\R^3, and two schematic models which capture many of the essential features of the dynamics for nn-DoF systems. In addition, we elucidate the structure of the NHIM.Comment: 44 pages, 38 figures, PDFLaTe

    Investigating the nature of motion in 3D perturbed elliptic oscillators displaying exact periodic orbits

    Full text link
    We study the nature of motion in a 3D potential composed of perturbed elliptic oscillators. Our technique is to use the results obtained from the 2D potential in order to find the initial conditions generating regular or chaotic orbits in the 3D potential. Both 2D and 3D potentials display exact periodic orbits together with extended chaotic regions. Numerical experiments suggest, that the degree of chaos increases rapidly, as the energy of the test particle increases. About 97% of the phase plane of the 2D system is covered by chaotic orbits for large energies. The regular or chaotic character of the 2D orbits is checked using the S(c) dynamical spectrum, while for the 3D potential we use the S(c) spectrum, along with the P(f) spectral method. Comparison with other dynamical indicators shows that the S(c) spectrum gives fast and reliable information about the character of motion.Comment: Published in Nonlinear Dynamics (NODY) journa

    Planetary Dynamics and Habitable Planet Formation In Binary Star Systems

    Full text link
    Whether binaries can harbor potentially habitable planets depends on several factors including the physical properties and the orbital characteristics of the binary system. While the former determines the location of the habitable zone (HZ), the latter affects the dynamics of the material from which terrestrial planets are formed (i.e., planetesimals and planetary embryos), and drives the final architecture of the planets assembly. In order for a habitable planet to form in a binary star system, these two factors have to work in harmony. That is, the orbital dynamics of the two stars and their interactions with the planet-forming material have to allow terrestrial planet formation in the habitable zone, and ensure that the orbit of a potentially habitable planet will be stable for long times. We have organized this chapter with the same order in mind. We begin by presenting a general discussion on the motion of planets in binary stars and their stability. We then discuss the stability of terrestrial planets, and the formation of potentially habitable planets in a binary-planetary system.Comment: 56 pages, 29 figures, chapter to appear in the book: Planets in Binary Star Systems (Ed. N. Haghighipour, Springer publishing company

    A new set of integrals of motion to propagate the perturbed two-body problem

    Full text link
    A formulation of the perturbed two-body problem that relies on a new set of orbital elements is presented. The proposed method represents a generalization of the special perturbation method published by Peláez et al. (Celest Mech Dyn Astron 97(2):131?150,2007) for the case of a perturbing force that is partially or totally derivable from a potential. We accomplish this result by employing a generalized Sundman time transformation in the framework of the projective decomposition, which is a known approach for transforming the two-body problem into a set of linear and regular differential equations of motion. Numerical tests, carried out with examples extensively used in the literature, show the remarkable improvement of the performance of the new method for different kinds of perturbations and eccentricities. In particular, one notable result is that the quadratic dependence of the position error on the time-like argument exhibited by Peláez?s method for near-circular motion under the J2 perturbation is transformed into linear.Moreover, themethod reveals to be competitive with two very popular elementmethods derived from theKustaanheimo-Stiefel and Sperling-Burdet regularizations
    • …
    corecore