25 research outputs found

    Lava flow hazard at Fogo Volcano, Cabo Verde, before and after the 2014–2015eruption

    Get PDF
    Abstract. Lava flow simulations help to better understand volcanic hazards and may assist emergency preparedness at active volcanoes. We demonstrate that at Fogo Volcano, Cabo Verde, such simulations can explain the 2014–2015 lava flow crisis and therefore provide a valuable base to better prepare for the next inevitable eruption. We conducted topographic mapping in the field and a satellite-based remote sensing analysis. We produced the first topographic model of the 2014–2015 lava flow from combined terrestrial laser scanner (TLS) and photogrammetric data. This high-resolution topographic information facilitates lava flow volume estimates of 43.7 ± 5.2 × 106 m3 from the vertical difference between pre- and posteruptive topographies. Both the pre-eruptive and updated digital elevation models (DEMs) serve as the fundamental input data for lava flow simulations using the well-established DOWNFLOW algorithm. Based on thousands of simulations, we assess the lava flow hazard before and after the 2014–2015 eruption. We find that, although the lava flow hazard has changed significantly, it remains high at the locations of two villages that were destroyed during this eruption. This result is of particular importance as villagers have already started to rebuild the settlements. We also analysed satellite radar imagery acquired by the German TerraSAR-X (TSX) satellite to map lava flow emplacement over time. We obtain the lava flow boundaries every 6 to 11 days during the eruption, which assists the interpretation and evaluation of the lava flow model performance. Our results highlight the fact that lava flow hazards change as a result of modifications of the local topography due to lava flow emplacement. This implies the need for up-to-date topographic information in order to assess lava flow hazards. We also emphasize that areas that were once overrun by lava flows are not necessarily safer, even if local lava flow thicknesses exceed the average lava flow thickness. Our observations will be important for the next eruption of Fogo Volcano and have implications for future lava flow crises and disaster response efforts at basaltic volcanoes elsewhere in the world

    Integration of micro-gravity and geodetic data to constrain shallow system mass changes at Krafla Volcano, N Iceland

    Get PDF
    New and previously published micro-gravity data are combined with InSAR data, precise levelling and GPS measurements to produce a model for the processes operating at Krafla volcano, 20 years after its most recent eruption. The data have been divided into two periods: from 1990 to 1995 and from 1996 to 2003 and show that the rate of deflation at Krafla is decaying exponentially. The net micro-gravity change at the centre of the caldera is shown, using the measured Free Air Gradient, to be -85 μGal for the first and -100 μGal for the second period. After consideration of the effects of water extraction by the geothermal power station within the caldera, the net gravity decreases are -73 ± 17 μGal for the first and -65 ± 17 μGal for the second period. These decreases are interpreted in terms of magma drainage. Following a Mogi point source model we calculate the mass decrease to be ~2 x 1010 kg/yr reflecting a drainage rate of ~0.23 m3/s, similar to the ~0.13 m3/s drainage rate previously found at Askja volcano, N-Iceland. Based on the evidence for deeper magma reservoirs and the similarity between the two volcanic systems, we suggest a pressure-link between Askja and Krafla at deeper levels (at the lower crust or the crust-mantle boundary). After the Krafla fires, co-rifting pressure decrease of a deep source at Krafla stimulated the subsequent inflow of magma, eventually affecting conditions along the plate boundary in N-Iceland, as far away as Askja. We anticipate that the pressure of the deeper reservoir at Krafla will reach a critical value and eventually magma will rise from there to the shallow magma chamber, possibly initiating a new rifting episode. We have demonstrated that by examining micro-gravity and geodetic data, our knowledge of active volcanic systems can be significantly improved

    Thermal Remote Sensing for Global Volcano Monitoring: Experiences From the MIROVA System

    Get PDF
    Volcanic activity is always accompanied by the transfer of heat from the Earth's crust to the atmosphere. This heat can be measured from space and its measurement is a very useful tool for detecting volcanic activity on a global scale. MIROVA (Middle Infrared Observation of Volcanic Activity) is an automatic volcano hot spot detection system, based on the analysis of MODIS data (Moderate Resolution Imaging Spectroradiometer). The system is able to detect, locate and quantify thermal anomalies in near real-time, by providing, on a dedicated website (www.mirovaweb.it), infrared images and thermal flux time-series on over 200 volcanoes worldwide. Thanks to its simple interface and intuitive representation of the data, MIROVA is currently used by several volcano observatories for daily monitoring activities and reporting. In this paper, we present the architecture of the system and we provide a state of the art on satellite thermal data usage for operational volcano monitoring and research. In particular, we describe the contribution that the thermal data have provided in order to detect volcanic unrest, to forecast eruptions and to depict trends and patterns during eruptive crisis. The current limits and requirements to improve the quality of the data, their distribution and interpretation are also discussed, in the light of the experience gained in recent years within the volcanological community. The results presented clearly demonstrate how the open access of satellite thermal data and the sharing of derived products allow a better understanding of ongoing volcanic phenomena, and therefore constitute an essential requirement for the assessment of volcanic hazards. Peer reviewe

    Towards coordinated regional multi-satellite InSAR volcano observations:results from the Latin America pilot project

    Get PDF
    Within Latin America, about 319 volcanoes have been active in the Holocene, but 202 of these volcanoes have no seismic, deformation or gas monitoring. Following the 2012 Santorini Report on satellite Earth Observation and Geohazards, the Committee on Earth Observation Satellites (CEOS) developed a 4-year pilot project (2013-2017) to demonstrate how satellite observations can be used to monitor large numbers of volcanoes cost-effectively, particularly in areas with scarce instrumentation and/or difficult access. The pilot aims to improve disaster risk management (DRM) by working directly with the volcano observatories that are governmentally responsible for volcano monitoring as well as with the international space agencies (ESA, CSA, ASI, DLR, JAXA, NASA, CNES). The goal is to make sure that the most useful data are collected at each volcano following the guidelines of the Santorini report that observation frequency is related to volcano activity, and to communicate the results to the local institutions in a timely fashion. Here we highlight how coordinated multi-satellite observations have been used by volcano observatories to monitor volcanoes and respond to crises. Our primary tool is measurements of ground deformation made by Interferometric Synthetic Aperture Radar (InSAR), which have been used in conjunction with other observations to determine the alert level at these volcanoes, served as an independent check on ground sensors, guided the deployment of ground instruments, and aided situational awareness. During this time period, we find 26 volcanoes deforming, including 18 of the 28 volcanoes that erupted – those eruptions without deformation were less than 2 on the VEI scale. Another 7 volcanoes were restless and the volcano observatories requested satellite observations, but no deformation was detected. We describe the lessons learned about the data products and information that are most needed by the volcano observatories in the different countries using information collected by questionnaires. We propose a practical strategy for regional to global satellite volcano monitoring for use by volcano observatories in Latin America and elsewhere to realize the vision of the Santorini report

    Microgravity Change During the 2008–2018 Kı̄lauea Summit Eruption: Nearly a Decade of Subsurface Mass Accumulation

    No full text
    Results from nine microgravity campaigns from Kı̄lauea, Hawaiʻi, spanning most of the volcano's 2008–2018 summit eruption, indicate persistent mass accumulation at shallow levels. A weighted least squares approach is used to recover microgravity results from a network of benchmarks around Kı̄lauea's summit, eliminate instrumental drift, and restore suspected data tares. A total mass of 1.9 × 1011 kg was determined from these microgravity campaigns to have accumulated below Kı̄lauea Caldera during 2009–2015 at an estimated depth of 1.3 km below sea level. Only a fraction of this mass is reflected in surface deformation, and this is consistent with previously reported discrepancies between subsurface mass accumulation and observed surface deformation. The discrepancy, amongst other independent evidence from gas emissions, seismicity, and continuous gravimetry, indicate densification of magma in the reservoirs below the volcano summit. This densification may have been driven by degassing through the summit vent. It is hypothesized that during the final years of the summit eruption, magma densification resulted in a buildup of pressure in the reservoirs that may have contributed to the lower East Rift Zone outbreak of 2018. The observed mass accumulation beneath Kı̄lauea could not have been detected through other techniques and illustrates the importance of microgravity measurements in volcano monitoring.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Applied Geophysics and PetrophysicsMathematical Geodesy and Positionin

    Insight into the May 2015 summit inflation event at Kīlauea Volcano, Hawai‘i

    No full text
    We use ground and space geodetic data to study surface deformation at Kīlauea Volcano from January to September 2015. This period includes an episode of heightened activity in April and May 2015 that culminated in a magmatic intrusion beneath the volcano's summit. The data set consists of Global Navigation Satellite System (GNSS), tilt, visual and seismic time series along with 25 descending and 15 ascending acquisitions of the Sentinel-1 satellite. We identify four different stages of surface deformation and volcanic activity, which we attribute to pressure changes and the movement of magma in response to an imbalance between magma supply and withdrawal in the shallow plumbing system, eventually leading to an intrusion beneath the summit area. In particular, we model the deformation as due to pressure changes in two subsurface magma bodies: the Halema‘uma‘u Reservoir (HMMR) and South Caldera Reservoir (SCR). The SCR was best described by an ellipsoidal source at 2.8 (2.65–3.07 at 95% confidence) km depth below the south caldera region. The HMMR was modeled as a point source located just east of Halema‘uma‘u crater at 1.5 (0.95–2.62) km depth. We suggest that a short-term increase in the magma supply rate to the volcano is a potential mechanisms for the intrusion, although other factors, like the filling of available void space or a reduced efficiency of magma transport through the volcano's East Rift Zone, may also play a role.Accepted Author ManuscriptAtmospheric Remote SensingMathematical Geodesy and Positionin

    Geodetic data shed light on ongoing caldera subsidence at Askja, Iceland

    No full text
    Subsidence within the main caldera of Askja volcano in the North of Iceland has been in progress since 1983. Here, we present new ground and satellite based deformation data, which we interpret together with new and existing micro-gravity data, to help understand which processes may be responsible for the unrest. From 2003-2007 we observe a net micro-gravity decrease combined with subsidence and from 2007-2009 we observe a net micro-gravity increase while the subsidence continues. We infer subsidence is caused by a combination of a cooling and contracting magma chamber at a divergent plate boundary. Mass movements at active volcanoes can be caused by several processes, including water table/lake level movements, hydrothermal activity and magma movements. We suggest that here, magma movement and/or a steam cap in the geothermal system of Askja at depth, are responsible for the observed microgravity variations. In this respect, we rule out the possibility of a shallow intrusion as an explanation for the observed micro-gravity increase but suggest magma may have flowed into the residing shallow magma chamber at Askja despite continued subsidence. In particular variable compressibility of magma residing in the magma chamber, but also compressibility of the surrounding rock may be the reason why this additional magma did not create any detectable surface deformation

    Lava flow hazard at Fogo Volcano, Cabo Verde, before and after the 2014–2015 eruption

    Get PDF
    Lava flow simulations help to better understand volcanic hazards and may assist emergency preparedness at active volcanoes. We demonstrate that at Fogo Volcano, Cabo Verde, such simulations can explain the 2014–2015 lava flow crisis and therefore provide a valuable base to better prepare for the next inevitable eruption. We conducted topographic mapping in the field and a satellite-based remote sensing analysis. We produced the first topographic model of the 2014–2015 lava flow from combined terrestrial laser scanner (TLS) and photogrammetric data. This high-resolution topographic information facilitates lava flow volume estimates of 43.7 ± 5.2 × 106 m3 from the vertical difference between pre- and posteruptive topographies. Both the pre-eruptive and updated digital elevation models (DEMs) serve as the fundamental input data for lava flow simulations using the well-established DOWNFLOW algorithm. Based on thousands of simulations, we assess the lava flow hazard before and after the 2014–2015 eruption. We find that, although the lava flow hazard has changed significantly, it remains high at the locations of two villages that were destroyed during this eruption. This result is of particular importance as villagers have already started to rebuild the settlements. We also analysed satellite radar imagery acquired by the German TerraSAR-X (TSX) satellite to map lava flow emplacement over time. We obtain the lava flow boundaries every 6 to 11 days during the eruption, which assists the interpretation and evaluation of the lava flow model performance. Our results highlight the fact that lava flow hazards change as a result of modifications of the local topography due to lava flow emplacement. This implies the need for up-to-date topographic information in order to assess lava flow hazards. We also emphasize that areas that were once overrun by lava flows are not necessarily safer, even if local lava flow thicknesses exceed the average lava flow thickness. Our observations will be important for the next eruption of Fogo Volcano and have implications for future lava flow crises and disaster response efforts at basaltic volcanoes elsewhere in the world

    Inflation at Askja, Iceland. New and revisited relative microgravity data

    No full text
    In August 2021 Askja caldera in Iceland started to show uplift after decades of subsidence. The uplift signal is centered at the northwestern edge of lake Ӧskjuvatn and an order of magnitude larger than the subsidence in the last decade. In September 2021 a geodesy campaign was carried out at Askja, including relative microgravity measurements acquired with the use of two Scintrex CG-5 instruments. Relative microgravity campaigns at Askja are not straightforward due to the long walking distances between sites, which makes a “double loop” procedure impossible. We revisit existing Scintrex relative microgravity data sets (2015 onward) and analyse data using the same joint weighted least squares inversion routine. We define recommendations for future relative microgravity campaigns at Askja which will be important to establish the cause of the ongoing uplift. The density of subsurface magma is only identifiable with microgravity data. Knowledge of the type of magma accumulating under Askja is vital to assess possible hazard implications.Mathematical Geodesy and Positionin
    corecore