86 research outputs found

    ON SOME INEQUALITIES FOR -MEASURABLE OPERATORS

    Get PDF
    This paper deals with the Choi’s inequality for measurable operators affiliated with a given von Neumann algebra. Some Young and Cauchy-Schwarz type inequalities for -measurable operators are also given

    Total-dose radiation effects data for semiconductor devices (1989 supplement)

    Get PDF
    Steady state, total dose radiation test data are provided for electronic designers and other personnel using semiconductor devices in a radiation environment. The data are presented in graphic and narrative formats. Two primary radiation source types were used: Cobalt-60 gamma rays and a Dynamitron electron accelerator capable of delivering 2.5 MeV electrons at a steady rate

    Author Self-Citation in the General Medicine Literature

    Get PDF
    Background: Author self-citation contributes to the overall citation count of an article and the impact factor of the journal in which it appears. Little is known, however, about the extent of self-citation in the general clinical medicine literature. The objective of this study was to determine the extent and temporal pattern of author self-citation and the article characteristics associated with author self-citation. Methodology/Principal Findings: We performed a retrospective cohort study of articles published in three high impact general medical journals (JAMA, Lancet, and New England Journal of Medicine) between October 1, 1999 and March 31, 2000. We retrieved the number and percentage of author self-citations received by the article since publication, as of June 2008, from the Scopus citation database. Several article characteristics were extracted by two blinded, independent reviewers for each article in the cohort and analyzed in multivariable linear regression analyses. Since publication, author self-citations accounted for 6.5 % (95 % confidence interval 6.3–6.7%) of all citations received by the 328 articles in our sample. Selfcitation peaked in 2002, declining annually thereafter. Studies with more authors, in cardiovascular medicine or infectious disease, and with smaller sample size were associated with more author self-citations and higher percentage of author selfcitation (all p#0.01). Conclusions/Significance: Approximately 1 in 15 citations of articles in high-profile general medicine journals are autho

    Numerical Model‐Software for Predicting Rock Formation Failure‐Time Using Fracture Mechanics

    Get PDF
    Real‐time integrated drilling is an important practice for the upstream petroleum industry. Traditional pre‐drill models, tend to offset the data gathered from the field since information obtained prior to spudding and drilling of new wells often become obsolete due to the changes in geology and geomechanics of reservoir‐rocks or formations. Estimating the complicated non‐linear failure‐time of a rock formation is a difficult but important task that helps to mitigate the effects of rock failure when drilling and producing wells from the subsurface. In this study, parameters that have the strongest impact on rock failure were used to develop a numerical and computational model for evaluating wellbore instability in terms of collapse, fracture, rock strength and failure‐time. This approach presents drilling and well engineers with a better understanding of the fracture mechanics and rock strength failureprediction procedure required to reduce stability problems by forecasting the rock/formation failuretime. The computational technique built into the software, uses the stress distribution around a rock formation as well as the rock’s responses to induced stress as a means of analyzing the failure time of the rock. The results from simulation show that the applied stress has the most significant influence on the failure‐time of the rock. The software also shows that the failure‐time varied over several orders of magnitude for varying stress‐loads. Thus, this will help drilling engineers avoid wellbore failure by adjusting the stress concentration properly through altering the mud pressure and well orientation with respect to in‐situ stresses. As observed from the simulation results for the failure time analysis, the trend shows that the time dependent strength failure is not just a function of the applied stress. Because, at applied stress of 6000–6050 psi there was time dependent failure whereas, at higher applied stress of 6350–6400 psi there was no time dependent strength failure

    Global 30-day outcomes after bariatric surgery during the COVID-19 pandemic (GENEVA): an international cohort study

    Get PDF

    CO2 capture on natural zeolite clinoptilolite: Effect of temperature and role of the adsorption sites

    No full text
    In this study, the adsorption capacity of the low-cost zeolite clinoptilolite was investigated for capturing carbon dioxide (CO2) emitted from industrial processes at moderate temperature. The CO2 adsorption capacity of clinoptilolite (a commercial natural zeolite) and ion-exchanged (with Na+ and Ca2+) clinoptilolite were tested under both dynamic (using a fixed-bed reactor operating with 10% vol. CO2 in N2) and equilibrium conditions (measuring single component adsorption isotherms). The dynamic CO2 adsorption capacity of bare clinoptilolite and ion-exchanged clinoptilolite were evaluated in the temperature range from 293 K to 338 K and the obtained breakthrough curves were compared with those of the commercial zeolite 13X (Z13X). Although the adsorption capacity of Z13X exceeded those of bare clinoptilolite and ion-exchanged clinoptilolite at 293 K, the clinoptilolite exhibited the highest CO2 uptake at a moderate temperature of 338 K (i.e. 25 % higher than Z13X). This feature appears in agreement with the lower isosteric heat of CO2 adsorption on clinoptilolite compared to the other samples. The surface species affecting the qiso and adsorption capacity were investigated through the FTIR spectroscopy using CO2 as probe molecule. As a whole, it has been observed that CO2 forms linear adducts onto K+ and Mg2+ cations of the bare clinoptilolite, and carbonate-like species onto its basic sites. With the Na-exchanged clinoptilolite, Na+ ions led to a decrease in surface basicity and to the formation of both single (Na+···O[dbnd]C[dbnd]O) and dual (Na+···O[dbnd]C[dbnd]O⋯Na+) cationic sites available for the formation of linear adducts. As a result of the remarkable adsorption capacity of clinoptilolite at 338 K, this material appears to be a promising adsorbent for the direct CO2 removal from different flue gases sources operating at such temperatures

    CO2 capture on natural zeolite clinoptilolite: Effect of temperature and role of the adsorption sites

    No full text
    In this study, the adsorption capacity of the low-cost zeolite clinoptilolite was investigated for capturing carbon dioxide (CO2) emitted from industrial processes at moderate temperature. The CO2 adsorption capacity of clinoptilolite (a commercial natural zeolite) and ion-exchanged (with Na+ and Ca2+) clinoptilolite were tested under both dynamic (using a fixed-bed reactor operating with 10% vol. CO2 in N2) and equilibrium conditions (measuring single component adsorption isotherms). The dynamic CO2 adsorption capacity of bare clinoptilolite and ion-exchanged clinoptilolite were evaluated in the temperature range from 293 K to 338 K and the obtained breakthrough curves were compared with those of the commercial zeolite 13X (Z13X). Although the adsorption capacity of Z13X exceeded those of bare clinoptilolite and ion-exchanged clinoptilolite at 293 K, the clinoptilolite exhibited the highest CO2 uptake at a moderate temperature of 338 K (i.e. 25 % higher than Z13X). This feature appears in agreement with the lower isosteric heat of CO2 adsorption on clinoptilolite compared to the other samples. The surface species affecting the qiso and adsorption capacity were investigated through the FTIR spectroscopy using CO2 as probe molecule. As a whole, it has been observed that CO2 forms linear adducts onto K+ and Mg2+ cations of the bare clinoptilolite, and carbonate-like species onto its basic sites. With the Na-exchanged clinoptilolite, Na+ ions led to a decrease in surface basicity and to the formation of both single (Na+···O[dbnd]C[dbnd]O) and dual (Na+···O[dbnd]C[dbnd]O⋯Na+) cationic sites available for the formation of linear adducts. As a result of the remarkable adsorption capacity of clinoptilolite at 338 K, this material appears to be a promising adsorbent for the direct CO2 removal from different flue gases sources operating at such temperatures

    A simple combined dynamic-equilibrium model of CO2 capture by a pelleted zeolite sorbent

    No full text
    Carbon dioxide (CO2) can be effectively captured from gas mixtures by adsorption on zeolite pellets in fixed-bed columns. In this paper we start from an experimental analysis of CO2 adsorption on a sample of few pellets, to end up with a simulation model for an adsorption column filled with a large number of pellets. The initial experimental analysis is based on dedicated isothermal tests carried out with a gas adsorption analyzer. For the relation between the measured amount of adsorbed CO2 per unit sorbent mass and the input adsorption pressure and temperature, an equilibrium Three-Site Langmuir (TSL) equation is here adopted. Its unknown parameters, namely the saturation capacities, the affinities and the adsorption energies, are estimated by minimizing the error between the equation and the measures. Then, for a whole adsorption column, a simple dynamic model is worked out, based on one-dimensional partial differential equations along the column axial direction: these account basically for mass and energy conservation, for the bulk gas flow and for the porous sorbent. The overall description obtained by combining the TSL equation with the rest of the model is validated against experimental tests, consisting of inlet CO2 molar fraction steps, on a laboratory-scale column
    corecore