29 research outputs found

    A preliminary study of factors affecting the calibration stability of the iridium versus iridium-40 percent rhodium thermocouple

    Get PDF
    An iridium versus iridium-40% rhodium thermocouple was studied. Problems associated with the use of this thermocouple for high temperature applications (up to 2000 C) were investigated. The metallurgical studies included X-ray, macroscopic, resistance, and metallographic studies. The thermocouples in the as-received condition from the manufacturer revealed large amounts of internal stress caused by cold working during manufacturing. The thermocouples also contained a large amount of inhomogeneities and segregations. No phase transformations were observed in the alloy up to 1100 C. It was found that annealing the thermocouple at 1800 C for two hours, and then at 1400 C for 2 to 3 hours yielded a fine grain structure, relieving some of the strains, and making the wire more ductile. It was also found that the above annealing procedure stabilized the thermal emf behavior of the thermocouple for application below 1800 C (an improvement from + or - 1% to + or - 0.02% within the range of the test parameters used)

    Displacements of Metallic Thermal Protection System Panels During Reentry

    Get PDF
    Bowing of metallic thermal protection systems for reentry of a previously proposed single-stage-to-orbit reusable launch vehicle was studied. The outer layer of current metallic thermal protection system concepts typically consists of a honeycomb panel made of a high temperature nickel alloy. During portions of reentry when the thermal protection system is exposed to rapidly varying heating rates, a significant temperature gradient develops across the honeycomb panel thickness, resulting in bowing of the honeycomb panel. The deformations of the honeycomb panel increase the roughness of the outer mold line of the vehicle, which could possibly result in premature boundary layer transition, resulting in significantly higher downstream heating rates. The aerothermal loads and parameters for three locations on the centerline of the windward side of this vehicle were calculated using an engineering code. The transient temperature distributions through a metallic thermal protection system were obtained using 1-D finite volume thermal analysis, and the resulting displacements of the thermal protection system were calculated. The maximum deflection of the thermal protection system throughout the reentry trajectory was 6.4 mm. The maximum ratio of deflection to boundary layer thickness was 0.032. Based on previously developed distributed roughness correlations, it was concluded that these defections will not result in tripping the hypersonic boundary layer

    Connective Heating Improvement for Emergency Fire Shelters (CHIEFS): Composition and Performance of Fire Shelter Concepts at Close-Out

    Get PDF
    Summary of highlights of the Convective Heating Improvement for Emergency Fire Shelters (CHIEFS) taskunder NASA. CHIEFS was tasked with providing the US Forest Service with an emergency fire shelter forimproved resistance to flame contact. Emphasis is on the final shelter designs at task close-out (end of FY17)

    The Development of a Thermally Enhanced Emergency Fire Shelter

    Get PDF
    Since its founding in 1905, the U.S. Forest Service has been responsible for maintaining public lands. The Forest Service and other public lands agencies respond to an average of 73,000 wildfires per year, and responding firefighters are required to carry a number of safety gear items, including the M2002 emergency fire shelter. The emergency fire shelter is intended to serve as a last resort means of protection in case a firefighter's escape route has been compromised in the face of an approaching flame front. No fire shelter deployment tragedy has been more costly than the 2013 Yarnell Hill fire in Arizona, where 19 members of the Granite Mountain Hotshots perished. After the tragedy at Yarnell Hill, the Forest Service decided to expedite the next redesign cycle of the fire shelter in order to improve its ability to withstand direct contact with flames. Engineers at NASA Langley Research Center have spent the better part of a decade developing flexible thermal materials for use in inflatable aerodynamic decelerators and have demonstrated their performance in the IRVE-2 and IRVE-3 flight programs (Inflatable Reentry Vehicle Experiment). NASA engineers recognized an opportunity to leverage their experience and knowledge with flexible thermal protection systems to potentially improve the fire shelter's resistance to direct flame contact, and have been working directly with the U.S. Forest Service to achieve this goal. They launched the CHIEFS project (Convective Heating Improvement for Emergency Fire Shelters) in 2014. Over the past three years, CHIEFS has screened over 270 unique material layups, and tested over 30 unique full scale shelter concepts in an effort to achieve a game changing improvement to the thermal protection of the fire shelter, while maintaining minimal mass and volume. This paper will discuss CHIEFS' 1st and 2nd generation fire shelter development efforts and test results

    Thermal conductivity of refractory glass fibres

    Get PDF
    In the present study, the current international standards and corresponding apparatus for measuring the thermal conductivity of refractory glass fibre products have been reviewed. Refractory glass fibres are normally produced in the form of low-density needled mats. A major issue with thermal conductivity measurements of these materials is lack of reproducibility in the test results due to transformation of the test material during the test. Also needled mats are inherently inhomogeneous, and this poses additional problems. To be able to compare the various methods of thermal conductivity measurement, a refractory reference material was designed which is capable of withstanding maximum test temperatures (1673 K) with minimum transformation. The thermal conductivity of this reference material was then measured using various methods according to the different standards surveyed. In order to compare different materials, samples have been acquired from major refractory glass fibre manufacturers and the results have been compared against the newly introduced reference material. Materials manufactured by melt spinning, melt blowing and sol–gel have been studied, and results compared with literature values

    Emotional Fuzzy Sliding-Mode Control for Unknown Nonlinear Systems

    Get PDF
    [[abstract]]The brain emotional learning model can be implemented with a simple hardware and processor; however, the learning model cannot model the qualitative aspects of human knowledge. To solve this problem, a fuzzy-based emotional learning model (FELM) with structure and parameter learning is proposed. The membership functions and fuzzy rules can be learned through the derived learning scheme. Further, an emotional fuzzy sliding-mode control (EFSMC) system, which does not need the plant model, is proposed for unknown nonlinear systems. The EFSMC system is applied to an inverted pendulum and a chaotic synchronization. The simulation results with the use of EFSMC system demonstrate the feasibility of FELM learning procedure. The main contributions of this paper are (1) the FELM varies its structure dynamically with a simple computation; (2) the parameter learning imitates the role of emotions in mammalians brain; (3) by combining the advantage of nonsingular terminal sliding-mode control, the EFSMC system provides very high precision and finite-time control performance; (4) the system analysis is given in the sense of the gradient descent method.[[notice]]補正完

    Thermal Characterization of Aerospace Structures

    No full text
    corecore