34 research outputs found

    Feline plasma adrenocorticotropic hormone: validation of a chemiluminescent assay and concentrations in cats with hypercortisolism, primary hypoadrenocorticism and other diseases

    Full text link
    Objectives: The aims of this study were to validate a commercially available chemiluminescent assay for measurement of feline plasma adrenocorticotropic hormone concentration (ACTH), to determine the normal reference interval (RI) of plasma ACTH in healthy cats, to assess plasma ACTH in cats with naturally occurring hypercortisolism (HC), primary hypoadrenocorticism (PH) and other diseases (OD), and to evaluate the effect of aprotinin on plasma ACTH degradation. Methods: Forty healthy cats, 10 with HC, 11 with PH and 30 with OD, were included. The chemiluminescent enzyme immunometric assay was evaluated by measurement of intra-assay precision, interassay precision and linearity. The RI for plasma ACTH in healthy cats was established using robust methods. Plasma ACTH of samples collected with and without aprotinin, stored at 4°C and assayed over a 6-day period, was measured. Results: The intra-assay coefficients of variance (CVs) ranged from 2.7% to 4.3% and interassay CVs from 3.3% to 10.7%. Dilution studies showed excellent accuracy (R2 &gt;0.99). The RI for plasma ACTH in healthy cats was 32–370 pg/ml. Plasma ACTH was not significantly different between healthy cats and the OD group. Cats with pituitary-dependent hypercortisolism (PDH) and PH had significantly higher plasma ACTH than the other groups. Plasma ACTH did not show significant differences when samples collected with and without aprotinin were compared. Conclusions and relevance: The Immulite chemiluminescent assay is a valid technique for measuring plasma ACTH in cats and the RI of plasma ACTH is quite wide. Owing to the low overlap between healthy or OD cats and cats with HC or PH, the measurement of plasma ACTH appears to be useful and should be included in the diagnostic work-up when HC or PH are suspected. Furthermore, the measurement of plasma ACTH may be an accurate test for differentiating PDH from adrenal-dependent hypercortisolism. </jats:sec

    Feline plasma adrenocorticotropic hormone: validation of a chemiluminescent assay and concentrations in cats with hypercortisolism, primary hypoadrenocorticism and other diseases

    No full text
    Objectives: The aims of this study were to validate a commercially available chemiluminescent assay for measurement of feline plasma adrenocorticotropic hormone concentration (ACTH), to determine the normal reference interval (RI) of plasma ACTH in healthy cats, to assess plasma ACTH in cats with naturally occurring hypercortisolism (HC), primary hypoadrenocorticism (PH) and other diseases (OD), and to evaluate the effect of aprotinin on plasma ACTH degradation. Methods: Forty healthy cats, 10 with HC, 11 with PH and 30 with OD, were included. The chemiluminescent enzyme immunometric assay was evaluated by measurement of intra-assay precision, interassay precision and linearity. The RI for plasma ACTH in healthy cats was established using robust methods. Plasma ACTH of samples collected with and without aprotinin, stored at 4°C and assayed over a 6-day period, was measured. Results: The intra-assay coefficients of variance (CVs) ranged from 2.7% to 4.3% and interassay CVs from 3.3% to 10.7%. Dilution studies showed excellent accuracy (R2 >0.99). The RI for plasma ACTH in healthy cats was 32–370 pg/ml. Plasma ACTH was not significantly different between healthy cats and the OD group. Cats with pituitary-dependent hypercortisolism (PDH) and PH had significantly higher plasma ACTH than the other groups. Plasma ACTH did not show significant differences when samples collected with and without aprotinin were compared. Conclusions and relevance: The Immulite chemiluminescent assay is a valid technique for measuring plasma ACTH in cats and the RI of plasma ACTH is quite wide. Owing to the low overlap between healthy or OD cats and cats with HC or PH, the measurement of plasma ACTH appears to be useful and should be included in the diagnostic work-up when HC or PH are suspected. Furthermore, the measurement of plasma ACTH may be an accurate test for differentiating PDH from adrenal-dependent hypercortisolism

    Feline plasma adrenocorticotropic hormone: validation of a chemiluminescent assay and concentrations in cats with hypercortisolism, primary hypoadrenocorticism and other diseases

    No full text
    Objectives: The aims of this study were to validate a commercially available chemiluminescent assay for measurement of feline plasma adrenocorticotropic hormone concentration (ACTH), to determine the normal reference interval (RI) of plasma ACTH in healthy cats, to assess plasma ACTH in cats with naturally occurring hypercortisolism (HC), primary hypoadrenocorticism (PH) and other diseases (OD), and to evaluate the effect of aprotinin on plasma ACTH degradation. Methods: Forty healthy cats, 10 with HC, 11 with PH and 30 with OD, were included. The chemiluminescent enzyme immunometric assay was evaluated by measurement of intra-assay precision, interassay precision and linearity. The RI for plasma ACTH in healthy cats was established using robust methods. Plasma ACTH of samples collected with and without aprotinin, stored at 4°C and assayed over a 6-day period, was measured. Results: The intra-assay coefficients of variance (CVs) ranged from 2.7% to 4.3% and interassay CVs from 3.3% to 10.7%. Dilution studies showed excellent accuracy (R2 >0.99). The RI for plasma ACTH in healthy cats was 32–370 pg/ml. Plasma ACTH was not significantly different between healthy cats and the OD group. Cats with pituitary-dependent hypercortisolism (PDH) and PH had significantly higher plasma ACTH than the other groups. Plasma ACTH did not show significant differences when samples collected with and without aprotinin were compared. Conclusions and relevance: The Immulite chemiluminescent assay is a valid technique for measuring plasma ACTH in cats and the RI of plasma ACTH is quite wide. Owing to the low overlap between healthy or OD cats and cats with HC or PH, the measurement of plasma ACTH appears to be useful and should be included in the diagnostic work-up when HC or PH are suspected. Furthermore, the measurement of plasma ACTH may be an accurate test for differentiating PDH from adrenal-dependent hypercortisolism

    Catalytic Alkyne Semihydrogenation with Polyhydride Ni/Ga Clusters

    No full text
    International audienceThe bimetallic, decanuclear Ni3Ga7-cluster of the formula [Ni-3(GaTMP)(3)(and mu;(2)-GaTMP)(3)(and mu;(3)-GaTMP)] (1, TMP=2,2,6,6-tetramethylpiperidinyl) reacts reversibly with dihydrogen under the formation of a series of (poly-)hydride clusters 2. Low-temperature 2D NMR experiments at -80 and DEG;C show that 2 consist of a mixture of a di- (2(Di)), tetra- (2(Tetra)) and hexahydride species (2(Hexa)). The structures of 2(Di) and 2(Tetra) are assessed by a combination of 2D NMR spectroscopy and DFT calculations. The cooperation of both metals is essential for the high hydrogen uptake of the cluster. Polyhydrides 2 are catalytically active in the semihydrogenation of 4-octyne to 4-octene with good selectivity. The example is the first of its kind and conceptually relates properties of molecular, atom-precise transition metal/main group metal clusters to the respective solid-state phase in catalysis

    MYCN induces cell-specific tumorigenic growth in RB1-proficient human retinal organoid and chicken retina models of retinoblastoma

    No full text
    Retinoblastoma is a rare, intraocular paediatric cancer that originates in the neural retina and is most frequently caused by bi-allelic loss of RB1 gene function. Other oncogenic mutations, such as amplification and increased expression of the MYCN gene, have been found even with proficient RB1 function. In this study, we investigated whether MYCN over-expression can drive carcinogenesis independently of RB1 loss-of-function mutations. The aim was to elucidate the events that result in carcinogenesis and identify the cancer cell-of-origin. We studied the chicken retina, a well-established model for studying retinal neurogenesis, and generated over-expression of MYCN by in ovo electroporation. In parallel, we established an equivalent human stem cell-derived retinal organoid (retinoid) model system. We found that over-expression of MYCN induced tumorigenic growth with high frequency in RB1-proficient chicken retinas and human retinoids. In both systems, the tumorigenic cells expressed markers for undifferentiated cone photoreceptor/horizontal cell progenitors. The over-expression resulted in metastatic retinoblastoma within 7-9 weeks in chicken. MYCN cells could be grown in vitro and, when orthotopically injected, formed tumours that infiltrated the sclera and optic nerve and expressed markers for undifferentiated cones. Investigation of the tumour cell phenotype determined that the potential for neoplastic growth was embryonic stage-dependent and featured a cell-specific resistance to apoptosis in the cone/horizontal cell lineage, but not in ganglion or amacrine cells. We conclude that MYCN over-expression is sufficient to drive tumorigenesis and that a cell-specific resistance to apoptosis in the cone/horizontal cell lineage mediates the cancer phenotype
    corecore