367 research outputs found

    Sign of inverse spin Hall voltages generated by ferromagnetic resonance and temperature gradients in yttrium iron garnet|platinum bilayers

    Get PDF
    We carried out a concerted effort to determine the absolute sign of the inverse spin Hall effect voltage generated by spin currents injected into a normal metal. We focus on yttrium iron garnet (YIG)|platinum bilayers at room temperature, generating spin currents by microwaves and temperature gradients. We find consistent results for different samples and measurement setups that agree with theory. We suggest a right-hand-rule to define a positive spin Hall angle corresponding to with the voltage expected for the simple case of scattering of free electrons from repulsive Coulomb charges.Comment: incorporated additions from the published versio

    Efficient spin transport in a paramagnetic insulator

    Get PDF
    The discovery of new materials that efficiently transmit spin currents has been important for spintronics and material science. The electric insulator Gd3Ga5O12\mathrm{Gd}_3\mathrm{Ga}_5\mathrm{O}_{12} (GGG) is a superior substrate for growing magnetic films, but has never been considered as a conduit for spin currents. Here we report spin current propagation in paramagnetic GGG over several microns. Surprisingly, the spin transport persists up to temperatures of 100 K \gg Tg=180T_{\mathrm{g}} = 180 mK, GGG's magnetic glass-like transition temperature. At 5 K we find a spin diffusion length λGGG=1.8±0.2μ{\lambda_{\mathrm{GGG}}} = 1.8 \pm 0.2 {\mu}m and a spin conductivity σGGG=(7.3±0.3)×104{\sigma}_{\mathrm{GGG}} = (7.3 \pm 0.3) \times10^4 Sm1\mathrm{Sm}^{-1} that is larger than that of the record quality magnet Y3Fe5O12\mathrm{Y}_3\mathrm{Fe}_5\mathrm{O}_{12} (YIG). We conclude that exchange coupling is not required for efficient spin transport, which challenges conventional models and provides new material-design strategies for spintronic devices.Comment: 21 pages, 4 figure

    Stress-Dependent Opioid And Adrenergic Modulation Of Newly Retrieved Fear Memory

    Get PDF
    Recent studies on the effect of stress on modulation of fear memory in our laboratory have uncovered endogenous opioid and adrenergic based modulation systems, working in concert, that limit the strengthening or weakening of newly acquired fear memory during consolidation under conditions of mild or intense stress, respectively. The present study sought to determine if similar stress-dependent modulation, mediated by endogenous opioid and adrenergic systems, occurs during reconsolidation of newly retrieved fear memory. Rats underwent contextual fear conditioning followed 24 h later by reactivation of fear memory; a retention test was administered the next day. Stress was manipulated by varying duration of recall of fear memory during reactivation. In the first experiment, vehicle or the opioid-receptor blocker naloxone was administered immediately after varied durations (30 or 120 s) of reactivation. The results indicate that (1) reactivation, in the absence of drug, has a marked effect on freezing behavior-as duration of reactivation increases from 30 to 120 s, freezing behavior and presumably fear-induced stress increases and (2) naloxone, administered immediately after 30 s (mild stress) or 120 s (intense stress) of reactivation, enhances or impairs retention, respectively, the next day. In the second experiment, naloxone and the g-adrenergic blocker propranolol were administered either separately or in combination immediately after 120 s (intense stress) reactivation. The results indicate that separate administration of propranolol and naloxone impairs retention, while the combined administration fails to do so. Taken together the results of the two experiments are consistent with a protective mechanism, mediated by endogenous opioid and adrenergic systems working in concert, that limits enhancement and impairment of newly retrieved fear memory during reactivation in a stress-dependent manner. (C) 2013 Elsevier Inc. All rights reserved

    Left ventricular non-compaction: clinical features and cardiovascular magnetic resonance imaging

    Get PDF
    Background: It is apparent that despite lack of family history, patients with the morphological characteristics of left ventricular non-compaction develop arrhythmias, thrombo-embolism and left ventricular dysfunction. METHODS: Forty two patients, aged 48.7 +/- 2.3 yrs (mean +/- SEM) underwent cardiovascular magnetic resonance (CMR) for the quantification of left ventricular volumes and extent of non-compacted (NC) myocardium. The latter was quantified using planimetry on the two-chamber long axis LV view (NC area). The patients included those referred specifically for CMR to investigate suspected cardiomyopathy, and as such is represents a selected group of patients. RESULTS: At presentation, 50% had dyspnoea, 19% chest pain, 14% palpitations and 5% stroke. Pulmonary embolism had occurred in 7% and brachial artery embolism in 2%. The ECG was abnormal in 81% and atrial fibrillation occurred in 29%. Transthoracic echocardiograms showed features of NC in only 10%. On CMR, patients who presented with dyspnoea had greater left ventricular volumes (both p < 0.0001) and a lower left ventricular ejection fraction (LVEF) (p < 0.0001) than age-matched, healthy controls. In patients without dyspnoea (n = 21), NC area correlated positively with end-diastolic volume (r = 0.52, p = 0.0184) and end-systolic volume (r = 0.56, p = 0.0095), and negatively with EF (r = -0.72, p = 0.0001). CONCLUSION: Left ventricular non-compaction is associated with dysrrhythmias, thromboembolic events, chest pain and LV dysfunction. The inverse correlation between NC area and EF suggests that NC contributes to left ventricular dysfunction

    Electron-Like Fermi Surface and Remnant (pi,0) Feature in Overdoped La1.78Sr0.22CuO4

    Full text link
    We have performed an angle-resolved photoemission study of overdoped La1.78Sr0.22CuO4, and have observed sharp nodal quasiparticle peaks in the second Brillouin zone that are comparable to data from Bi2Sr2CaCu2O8+d. The data analysis using energy distribution curves, momentum distribution curves and intensity maps all show evidence of an electron-like Fermi surface, which is well explained by band structure calculations. Evidence for many-body effects are also found in the substantial spectral weight remaining below the Fermi level around (pi,0), where the band is predicted to lie above EF.Comment: 4 pages, 4 figure

    Precocious Metamorphosis in the Juvenile Hormone–Deficient Mutant of the Silkworm, Bombyx mori

    Get PDF
    Insect molting and metamorphosis are intricately governed by two hormones, ecdysteroids and juvenile hormones (JHs). JHs prevent precocious metamorphosis and allow the larva to undergo multiple rounds of molting until it attains the proper size for metamorphosis. In the silkworm, Bombyx mori, several “moltinism” mutations have been identified that exhibit variations in the number of larval molts; however, none of them have been characterized molecularly. Here we report the identification and characterization of the gene responsible for the dimolting (mod) mutant that undergoes precocious metamorphosis with fewer larval–larval molts. We show that the mod mutation results in complete loss of JHs in the larval hemolymph and that the mutant phenotype can be rescued by topical application of a JH analog. We performed positional cloning of mod and found a null mutation in the cytochrome P450 gene CYP15C1 in the mod allele. We also demonstrated that CYP15C1 is specifically expressed in the corpus allatum, an endocrine organ that synthesizes and secretes JHs. Furthermore, a biochemical experiment showed that CYP15C1 epoxidizes farnesoic acid to JH acid in a highly stereospecific manner. Precocious metamorphosis of mod larvae was rescued when the wild-type allele of CYP15C1 was expressed in transgenic mod larvae using the GAL4/UAS system. Our data therefore reveal that CYP15C1 is the gene responsible for the mod mutation and is essential for JH biosynthesis. Remarkably, precocious larval–pupal transition in mod larvae does not occur in the first or second instar, suggesting that authentic epoxidized JHs are not essential in very young larvae of B. mori. Our identification of a JH–deficient mutant in this model insect will lead to a greater understanding of the molecular basis of the hormonal control of development and metamorphosis

    Echocardiography in the diagnosis left ventricular noncompaction

    Get PDF
    Echocardiography is the method of choice to establish a diagnosis and determine a treatment plan for patients with noncompaction of ventricular myocardium (NVM). The 2-dimentional echocardiography, 3-dimentional echocardiography, color Doppler echocardiography and contrast-enhanced echocardiography are of critical importance for diagnosis and family screening of NVM

    Coronary flow reserve in stress-echo lab. From pathophysiologic toy to diagnostic tool

    Get PDF
    The assessment of coronary flow reserve by transthoracic echocardiography has recently been introduced into clinical practice with gratifying results for the diagnosis of left anterior descending artery disease simultaneously reported by several independent laboratories. This technological novelty is changing the practice of stress echo for 3 main reasons. First, adding coronary flow reserve to regional wall motion allows us to have – in the same sitting – high specificity (regional wall motion) and a high sensitivity (coronary flow reserve) diagnostic marker, with an obvious improvement in overall diagnostic accuracy. Second, the technicalities of coronary flow reserve shift the balance of stress choice in favour of vasodilators, which are a more robust hyperemic stress and are substantially easier to perform with dual imaging than dobutamine or exercise. Third, the coronary flow reserve adds a quantitative support to the exquisitely qualitative assessment of wall motion analysis, thereby facilitating the communication of stress echo results to the cardiological world outside the echo lab. The next challenges involve the need to expand the exploration of coronary flow reserve to the right and circumflex coronary artery and to prove the additional prognostic value – if any – of coronary flow reserve over regional wall motion analysis, which remains the cornerstone of clinically-driven diagnosis in the stress echo lab
    corecore