435 research outputs found

    Dazzle camouflage, target tracking, and the confusion effect

    Get PDF
    The influence of coloration on the ecology and evolution of moving animals in groups is poorly understood. Animals in groups benefit from the “confusion effect,” where predator attack success is reduced with increasing group size or density. This is thought to be due to a sensory bottleneck: an increase in the difficulty of tracking one object among many. Motion dazzle camouflage has been hypothesized to disrupt accurate perception of the trajectory or speed of an object or animal. The current study investigates the suggestion that dazzle camouflage may enhance the confusion effect. Utilizing a computer game style experiment with human predators, we found that when moving in groups, targets with stripes parallel to the targets’ direction of motion interact with the confusion effect to a greater degree, and are harder to track, than those with more conventional background matching patterns. The findings represent empirical evidence that some high-contrast patterns may benefit animals in groups. The results also highlight the possibility that orientation and turning may be more relevant in the mechanisms of dazzle camouflage than previously recognized

    Contrast, contours and the confusion effect in dazzle camouflage

    Get PDF
    ‘Motion dazzle camouflage’ is the name for the putative effects of highly conspicuous, often repetitive or complex, patterns on parameters important in prey capture, such as the perception of speed, direction and identity. Research into motion dazzle camouflage is increasing our understanding of the interactions between visual tracking, the confusion effect and defensive coloration. However, there is a paucity of research into the effects of contrast on motion dazzle camouflage: is maximal contrast a prerequisite for effectiveness? If not, this has important implications for our recognition of the phenotype and understanding of the function and mechanisms of potential motion dazzle camouflage patterns. Here we tested human participants' ability to track one moving target among many identical distractors with surface patterns designed to test the influence of these factors. In line with previous evidence, we found that targets with stripes parallel to the object direction of motion were hardest to track. However, reduction in contrast did not significantly influence this result. This finding may bring into question the utility of current definitions of motion dazzle camouflage, and means that some animal patterns, such as aposematic or mimetic stripes, may have previously unrecognized multiple functions

    False holes as camouflage

    Get PDF
    Long noted by naturalists, leaf mimicry provides some of the most impressive examples of camouflage through masquerade. Many species of leaf-mimicking Lepidoptera also sport wing markings that closely resemble irregularly shaped holes caused by decay or insect damage. Despite proposals that such markings can either enhance resemblance to damaged leaves or act to disrupt surface appearance through false depth cues, to our knowledge, no attempt has been made to establish exactly how these markings function, or even whether they confer a survival benefit to prey. Here, in two field experiments using artificial butterfly-like targets, we show that false hole markings provide significant survival benefits against avian predation. Furthermore, in a computer-based visual search experiment, we demonstrate that detection of such targets by humans is impeded in a similar fashion. Equally contrasting light marks do not have the same effect; indeed, they lead to increased detection. We conclude that the mechanism is the disruption of the otherwise homogeneous wing surface (surface disruptive camouflage) and that, by resembling the holes sometimes found in real leaves, the disruptive benefits are not offset by conspicuousness costs.Funding provided by: Engineering and Physical Sciences Research CouncilCrossref Funder Registry ID: http://dx.doi.org/10.13039/501100000266Award Number: EP/M006905/

    Imperfect transparency and camouflage in glass frogs

    Get PDF

    A Quantitative Test of the Predicted Relationship between Countershading and Lighting Environment

    Get PDF
    Countershading, a vertical luminance gradient from a dark back to a light belly, is perhaps the most common coloration phenotype in the animal kingdom. Why? We investigated whether countershading functions as self-shadow concealment (SSC) in ruminants. We calculated “optimal” countershading for SSC by measuring illumination falling onto a model ruminant as a function of time of day and lighting environment. Calibrated images of 114 species of ruminant were compared to the countershading model, and phylogenetic analyses were used to find the best predictors of coats’ countershading characteristics. In many species, countershading was close to the model’s prediction of “optimal” countershading for SSC. Stronger countershading was associated with increased use of open lighting environments, living closer to the equator, and small body size. Abrupt transitions from dark to light tones were more common in open lighting environments but unassociated with group size or antipredator behavior. Though the SSC hypothesis prediction for stronger countershading in diurnal species was not supported and noncountershaded or reverse-countershaded species were unexpectedly common, this basic pattern of associations is explained only by the SSC hypothesis. Despite extreme variation in lighting conditions, many terrestrial animals still find protection from predation by compensating for their own shadows
    • 

    corecore