1,246 research outputs found

    Environmental effects on star formation in dwarf galaxies and star clusters

    Full text link
    We develop a simple analytical criterion to investigate the role of the environment on the onset of star formation. We will consider the main external agents that influence the star formation (i.e. ram pressure, tidal interaction, Rayleigh-Taylor and Kelvin-Helmholtz instabilities) in a spherical galaxy moving through an external environment. The theoretical framework developed here has direct applications to the cases of dwarf galaxies in galaxy clusters and dwarf galaxies orbiting our Milky Way system, as well as any primordial gas-rich cluster of stars orbiting within its host galaxy. We develop an analytic formalism to solve the fluid dynamics equations in a non-inertial reference frame mapped with spherical coordinates. The two-fluids instability at the interface between a stellar system and its surrounding hotter and less dense environment is related to the star formation processes through a set of differential equations. The solution presented here is quite general, allowing us to investigate most kinds of orbits allowed in a gravitationally bound system of stars in interaction with a major massive companion. We present an analytical criterion to elucidate the dependence of star formation in a spherical stellar system (as a dwarf galaxy or a globular cluster) on its surrounding environment useful in theoretical interpretations of numerical results as well as observational applications. We show how spherical coordinates naturally enlighten the interpretation of the two-fluids instability in a geometry that directly applies to astrophysical case. This criterion predicts the threshold value for the onset of star formation in a mass vs. size space for any orbit of interest. Moreover, we show for the first time the theoretical dependencies of the different instability phenomena acting on a system in a fully analytical way.Comment: ACCEPTED in A&A the 09/09/2014. Changes from ver 1: the non-inertial linear-response theory for gas instabilities in spherical coordinates is moved to the Appenidx and will be available only on-lin

    Multivariate characterization of hydrogen Balmer emission in cataclysmic variables

    Get PDF
    The ratios of hydrogen Balmer emission line intensities in cataclysmic variables are signatures of the physical processes that produce them. To quantify those signatures relative to classifications of cataclysmic variable types, we applied the multivariate statistical analysis methods of principal components analysis and discriminant function analysis to the spectroscopic emission data set of Williams (1983). The two analysis methods reveal two different sources of variation in the ratios of the emission lines. The source of variation seen in the principal components analysis was shown to be correlated with the binary orbital period. The source of variation seen in the discriminant function analysis was shown to be correlated with the equivalent width of the HÎČ\beta line. Comparison of the data scatterplot with scatterplots of theoretical models shows that Balmer line emission from T CrB systems is consistent with the photoionization of a surrounding nebula. Otherwise, models that we considered do not reproduce the wide range of Balmer decrements, including "inverted" decrements, seen in the data.Comment: Accepted by PAS

    Stokes imaging, Doppler mapping and Roche tomography of the AM Her system V834 Cen

    Full text link
    We report on new simultaneous phase resolved spectroscopic and polarimetric observations of the polar (AM Herculis star) V834 Cen during a high state of accretion. Strong emission lines and high levels of variable circular and linear polarization are observed over the orbital period. The polarization data is modelled using the Stokes imaging technique of Potter et al. The spectroscopic emission lines are investigated using the Doppler tomography technique of Marsh and Horne and the Roche tomography technique of Dhillon and Watson. Up to now all three techniques have been used separately to investigate the geometry and accretion dynamics in Cataclysmic Variables. For the first time, we apply all three techniques to simultaneous data for a single system. This allows us to compare and test each of the techniques against each other and hence derive a better understanding of the geometry, dynamics and system parameters of V834 Cen.Comment: 10 pages, 8 figures; Accepted for publication in MNRA

    Timing analysis of the isolated neutron star RX J0720.4-3125

    Full text link
    We present a combined analysis of XMM-Newton, Chandra and Rosat observations of the isolated neutron star RXJ0720.4-3125, spanning a total period of \sim 7 years. We develop a maximum likelihood periodogramme for our analysis based on the \Delta C-statistic and the maximum likelihood method, which are appropriate for the treatment of sparse event lists. Our results have been checked "a posteriori" by folding a further BeppoSAX dataset with the period predicted at the time of that observation: the phase is found to be consistent. The study of the spin history and the measure of the spin-down rate is of extreme importance in discriminating between the possible mechanisms suggested for the nature of the X-ray emission. The value of \dot P, here measured for the first time, is \approx 10^{-14} s/s. This value can not be explained in terms of torque from a fossil disk. When interpreted in terms of dipolar losses, it gives a magnetic field of B \approx 10^{13} G, making also implausible that the source is accreting from the underdense surroundings. On the other hand, we also find unlikely that the field decayed from a much larger value (B\approx 10^{15} G, as expected for a magnetar powered by dissipation of a superstrong field) since this scenario predicts a source age of \approx 10^4 yrs, too young to match the observed X-ray luminosity. The observed properties are more compatible with a scenario in which the source is \approx 10^6 yrs old, and its magnetic field has not changed substantially over the lifetime.Comment: 11 Pages, 6 Figures. Accepted for publication in MNRA

    First XMM-Newton observations of strongly magnetic cataclysmic variables - II. Timing studies of DP Leo and WW Hor

    Get PDF
    XMM-Newton was used to observe two eclipsing, magnetic cataclysmic variables, DP Leo and WW Hor, continuously for three orbital cycles each. Both systems were in an intermediate state of accretion. For WW Hor we also obtained optical light curves with the XMM-Newton Optical Monitor and from ground-based observations. Our analysis of the X-ray and optical light curves allows us to constrain physical and geometrical parameters of the accretion regions and derive orbital parameters and eclipse ephemerides of the systems. For WW Hor we directly measure horizontal and vertical temperature variations in the accretion column. From comparisons with previous observations we find that changes in the accretion spot longitude are correlated with the accretion rate. For DP Leo the shape of the hard X-ray light curve is not as expected for optically thin emission, showing the importance of optical depth effects in the post-shock region. We find that the spin period of the white dwarf is slightly shorter than the orbital period and that the orbital period is decreasing faster than expected for energy loss by gravitational radiation alone.Comment: Accepted for publication in MNRAS, 12 pages, 6 figure

    The emergence of quantum capacitance in epitaxial graphene

    Get PDF
    We found an intrinsic redistribution of charge arises between epitaxial graphene, which has intrinsically n-type doping, and an undoped substrate. In particular, we studied in detail epitaxial graphene layers thermally elaborated on C-terminated 4H4H-SiCSiC (4H4H-SiCSiC (0001ˉ000{\bar{1}})). We have investigated the charge distribution in graphene-substrate systems using Raman spectroscopy. The influence of the substrate plasmons on the longitudinal optical phonons of the SiCSiC substrates has been detected. The associated charge redistribution reveals the formation of a capacitance between the graphene and the substrate. Thus, we give for the first time direct evidence that the excess negative charge in epitaxial monolayer graphene could be self-compensated by the SiCSiC substrate without initial doping. This induced a previously unseen redistribution of the charge-carrier density at the substrate-graphene interface. There a quantum capacitor appears, without resorting to any intentional external doping, as is fundamentally required for epitaxial graphene. Although we have determined the electric field existing inside the capacitor and revealed the presence of a minigap (≈4.3meV\approx 4.3meV) for epitaxial graphene on 4H4H-SiCSiC face terminated carbon, it remains small in comparison to that obtained for graphene on face terminated SiSi. The fundamental electronic properties found here in graphene on SiCSiC substrates may be important for developing the next generation of quantum technologies and electronic/plasmonic devices.Comment: 26 pages, 8 figures, available online as uncorrected proof, Journal of Materials Chemistry C (2016

    Climate Change Across The Macaronesian Geographical Region, 1850 - 2100

    Get PDF
    The Macaronesian geographical zone extends from 10-40°N, 325-355°E and primarily includes the island chains of the Azores, Madeira, the Canary Islands and Cape Verde. This thesis presents a wide-ranging analysis of the physical climate and oceanography of the region back to 1850, in order to place recent climate change within a historical context. Subsequently, this thesis presents the most complete documentation of the physical climate of Macaronesia in the English language literature. One of the main outputs of this thesis is the creation of a long-term, monthly surface air temperature record for each island chain (from 1865 for the Azores and Madeira, 1885 for the Canary Islands and 1895 for Cape Verde). These temperature records exhibit generally coherent patterns of variability, and a post-1976 increase in temperature - most probably reflecting an anthropogenic climate signal - is the most ubiquitous, significant rise (or fall) in the record. Precipitation variability is also analysed, although only trends from Cape Verde are particularly significant, where a slight precipitation recovery - after the turn of the Twenty-first Century since drought conditions in the mid-late Twentieth Century - is apparent. Climatological extreme indices, based on calculations that assimilate daily temperature and precipitation data, were also analysed for the recent past (1979-2011) and point towards warmer conditions. An assessment of potential future changes in the mean state and extreme indices of climate across the islands by the end of the Twenty-first Century is provided. Warming magnitudes for the 2071-2100 period range between 0.8-3.0°C above the 1976-2005 mean temperature. Precipitation is expected to decrease across the Canary Islands and Madeira, whereas the Azores is expected to experience more extreme precipitation events and precipitation changes across Cape Verde are uncertain. In addition to the analysis of temperature and precipitation changes, a daily North Atlantic Oscillation index extending back to 1850 using historical sea-level pressure data from the Azores was constructed. The temporal length of this newly created index exceeds the length of any previously available long-running, daily-resolution series by a hundred years and should be of great value to researchers across multiple disciplines. The spatial and temporal variability of the North Atlantic Oscillation was analysed, finding an increase in post-2004 winter variability, alongside a post-1991 negative summer trend. A novel method to characterise the strength of the Trade Winds by using data from the Azores and Cape Verde was also developed. The newly-defined Trade Wind index has been steadily increasing since 1973. An additional analysis was a comprehensive overview and reconciliation of multiple data sources to answer the question of whether coastal upwelling has been increasing across the Canary Upwelling Ecosystem along the northwest African coastline. This analysis determined that the Bakun upwelling intensification hypothesis developed in 1990 appears to be realised in the summertime coastal upwelling indices. The North Atlantic Oscillation was discovered to be strongly related to upwelling magnitudes for all seasons except summer, in addition to exerting a strong control on temperatures and precipitation across the three northernmost Macaronesian island chains. The small-scale features affecting island climates and the large-scale modes of variability that influence the Macaronesian region are also discussed

    UBVRI photopolarimetry of the long period eclipsing AM Herculis binary V1309

    Get PDF
    We report simultaneous UBVRI photo-polarimetric observations of the long period (7.98 h) AM Her binary V1309 Ori. The length and shape of the eclipse ingress and egress varies from night to night. We suggest this is due to the variation in the brightness of the accretion stream. By comparing the phases of circular polarization zero-crossovers with previous observations, we confirm that V1309 Ori is well synchronized, and find an upper limit of 0.002 percent for the difference between the spin and orbital periods. We model the polarimetry data using a model consisting of two cyclotron emission regions at almost diametrically opposite locations, and centered at colatitude 35 (deg) and 145 (deg) on the surface of the white dwarf. We also present archive X-ray observations which show that the negatively polarised accretion region is X-ray bright.Comment: 11 pages, 12 figures (2 colour), Fig1 and Fig 4 are in lower resolution than in original paper, accepted for publication in Monthly Notices of the Royal Astronomical Societ

    The isolated neutron star X-ray pulsars RX J0420.0–5022 and RX J0806.4–4123 : new X-ray and optical observations

    Get PDF
    We report on the analysis of new X-ray data obtained with XMM-Newton and Chandra from two ROSAT-discovered X-ray dim isolated neutron stars (XDINs). RX J0806.4−4123 was observed with XMM-Newton in April 2003, 2.5 years after the first observation. The EPIC-pn data confirm that this object is an X-ray pulsar with 11.371 s neutron star spin period. The X-ray spectrum is consistent with absorbed black-body emission with a temperature kT = 96 eV and N H = 4 × 10 19 cm −2 without significant changes between the two observations. Four XMM-Newton observations of RX J0420.0−5022 between December 2002 and July 2003 did not confirm the 22.7 s pulsations originally indicated in ROSAT data, but clearly reveal a 3.453 s period. A fit to the X-ray spectrum using an absorbed black-body model yields kT = 45 eV, the lowest value found from the small group of XDINs and N H = 1.0 × 10 20 cm −2. Including a broad absorption line improves the quality of the spectral fits considerably for both objects and may indicate the presence of absorption features similar to those reported from RBS1223, RX J1605.3+3249 and RX J0720.4−3125. For both targets we derive accurate X-ray positions from the Chandra data and present an optical counterpart candidate for RX J0420.0−5022 with B = 26.6 ± 0.3 mag from VLT imaging
    • 

    corecore