1,654 research outputs found

    On The Phase Transition in D=3 Yang-Mills Chern-Simons Gauge Theory

    Get PDF
    SU(N)SU(N) Yang-Mills theory in three dimensions, with a Chern-Simons term of level kk (an integer) added, has two dimensionful coupling constants, g2kg^2 k and g2Ng^2 N; its possible phases depend on the size of kk relative to NN. For kNk \gg N, this theory approaches topological Chern-Simons theory with no Yang-Mills term, and expectation values of multiple Wilson loops yield Jones polynomials, as Witten has shown; it can be treated semiclassically. For k=0k=0, the theory is badly infrared singular in perturbation theory, a non-perturbative mass and subsequent quantum solitons are generated, and Wilson loops show an area law. We argue that there is a phase transition between these two behaviors at a critical value of kk, called kck_c, with kc/N2±.7k_c/N \approx 2 \pm .7. Three lines of evidence are given: First, a gauge-invariant one-loop calculation shows that the perturbative theory has tachyonic problems if k29N/12k \leq 29N/12.The theory becomes sensible only if there is an additional dynamic source of gauge-boson mass, just as in the k=0k=0 case. Second, we study in a rough approximation the free energy and show that for kkck \leq k_c there is a non-trivial vacuum condensate driven by soliton entropy and driving a gauge-boson dynamical mass MM, while both the condensate and MM vanish for kkck \geq k_c. Third, we study possible quantum solitons stemming from an effective action having both a Chern-Simons mass mm and a (gauge-invariant) dynamical mass MM. We show that if M \gsim 0.5 m, there are finite-action quantum sphalerons, while none survive in the classical limit M=0M=0, as shown earlier by D'Hoker and Vinet. There are also quantum topological vortices smoothly vanishing as M0M \rightarrow 0.Comment: 36 pages, latex, two .eps and three .ps figures in a gzipped uuencoded fil

    Nexus solitons in the center vortex picture of QCD

    Get PDF
    It is very plausible that confinement in QCD comes from linking of Wilson loops to finite-thickness vortices with magnetic fluxes corresponding to the center of the gauge group. The vortices are solitons of a gauge-invariant QCD action representing the generation of gluon mass. There are a number of other solitonic states of this action. We discuss here what we call nexus solitons, in which for gauge group SU(N), up to N vortices meet a a center, or nexus, provided that the total flux of the vortices adds to zero (mod N). There are fundamentally two kinds of nexuses: Quasi-Abelian, which can be described as composites of Abelian imbedded monopoles, whose Dirac strings are cancelled by the flux condition; and fully non-Abelian, resembling a deformed sphaleron. Analytic solutions are available for the quasi-Abelian case, and we discuss variational estimates of the action of the fully non-Abelian nexus solitons in SU(2). The non-Abelian nexuses carry Chern-Simons number (or topological charge in four dimensions). Their presence does not change the fundamentals of confinement in the center-vortex picture, but they may lead to a modified picture of the QCD vacuum.Comment: LateX, 24 pages, 2 .eps figure

    Center vortices and confinement vs. screening

    Full text link
    We study adjoint and fundamental Wilson loops in the center-vortex picture of confinement, for gauge group SU(N) with general N. There are N-1 distinct vortices, whose properties, including collective coordinates and actions, we study. In d=2 we construct a center-vortex model by hand so that it has a smooth large-N limit of fundamental-representation Wilson loops and find, as expected, confinement. Extending an earlier work by the author, we construct the adjoint Wilson-loop potential in this d=2 model for all N, as an expansion in powers of ρ/M2\rho/M^2, where ρ\rho is the vortex density per unit area and M is the vortex inverse size, and find, as expected, screening. The leading term of the adjoint potential shows a roughly linear regime followed by string breaking when the potential energy is about 2M. This leading potential is a universal (N-independent at fixed fundamental string tension KFK_F) of the form (KF/M)U(MR)(K_F/M)U(MR), where R is the spacelike dimension of a rectangular Wilson loop. The linear-regime slope is not necessarily related to KFK_F by Casimir scaling. We show that in d=2 the dilute vortex model is essentially equivalent to true d=2 QCD, but that this is not so for adjoint representations; arguments to the contrary are based on illegal cumulant expansions which fail to represent the necessary periodicity of the Wilson loop in the vortex flux. Most of our arguments are expected to hold in d=3,4 also.Comment: 29 pages, LaTex, 1 figure. Minor changes; references added; discussion of factorization sharpened. Major conclusions unchange

    On One-Loop Gap Equations for the Magnetic Mass in d=3 Gauge Theory

    Get PDF
    Recently several workers have attempted determinations of the so-called magnetic mass of d=3 non-Abelian gauge theories through a one-loop gap equation, using a free massive propagator as input. Self-consistency is attained only on-shell, because the usual Feynman-graph construction is gauge-dependent off-shell. We examine two previous studies of the pinch technique proper self-energy, which is gauge-invariant at all momenta, using a free propagator as input, and show that it leads to inconsistent and unphysical result. In one case the residue of the pole has the wrong sign (necessarily implying the presence of a tachyonic pole); in the second case the residue is positive, but two orders of magnitude larger than the input residue, which shows that the residue is on the verge of becoming ghostlike. This happens because of the infrared instability of d=3 gauge theory. A possible alternative one-loop determination via the effective action also fails. The lesson is that gap equations must be considered at least at two-loop level.Comment: 21 pages, LaTex, 2 .eps figure

    Center Vortices, Nexuses, and Fractional Topological Charge

    Get PDF
    It has been remarked in several previous works that the combination of center vortices and nexuses (a nexus is a monopole-like soliton whose world line mediates certain allowed changes of field strengths on vortex surfaces) carry topological charge quantized in units of 1/N for gauge group SU(N). These fractional charges arise from the interpretation of the standard topological charge integral as a sum of (integral) intersection numbers weighted by certain (fractional) traces. We show that without nexuses the sum of intersection numbers gives vanishing topological charge (since vortex surfaces are closed and compact). With nexuses living as world lines on vortices, the contributions to the total intersection number are weighted by different trace factors, and yield a picture of the total topological charge as a linking of a closed nexus world line with a vortex surface; this linking gives rise to a non-vanishing but integral topological charge. This reflects the standard 2\pi periodicity of the theta angle. We argue that the Witten-Veneziano relation, naively violating 2\pi periodicity, scales properly with N at large N without requiring 2\pi N periodicity. This reflects the underlying composition of localized fractional topological charge, which are in general widely separated. Some simple models are given of this behavior. Nexuses lead to non-standard vortex surfaces for all SU(N) and to surfaces which are not manifolds for N>2. We generalize previously-introduced nexuses to all SU(N) in terms of a set of fundamental nexuses, which can be distorted into a configuration resembling the 't Hooft-Polyakov monopole with no strings. The existence of localized but widely-separated fractional topological charges, adding to integers only on long distance scales, has implications for chiral symmetry breakdown.Comment: 15 pages, revtex, 6 .eps figure

    Center Vortices, Nexuses, and the Georgi-Glashow Model

    Get PDF
    In a gauge theory with no Higgs fields the mechanism for confinement is by center vortices, but in theories with adjoint Higgs fields and generic symmetry breaking, such as the Georgi-Glashow model, Polyakov showed that in d=3 confinement arises via a condensate of 't Hooft-Polyakov monopoles. We study the connection in d=3 between pure-gauge theory and the theory with adjoint Higgs by varying the Higgs VEV v. As one lowers v from the Polyakov semi- classical regime v>>g (g is the gauge coupling) toward zero, where the unbroken theory lies, one encounters effects associated with the unbroken theory at a finite value v\sim g, where dynamical mass generation of a gauge-symmetric gauge- boson mass m\sim g^2 takes place, in addition to the Higgs-generated non-symmetric mass M\sim vg. This dynamical mass generation is forced by the infrared instability (in both 3 and 4 dimensions) of the pure-gauge theory. We construct solitonic configurations of the theory with both m,M non-zero which are generically closed loops consisting of nexuses (a class of soliton recently studied for the pure-gauge theory), each paired with an antinexus, sitting like beads on a string of center vortices with vortex fields always pointing into (out of) a nexus (antinexus); the vortex magnetic fields extend a transverse distance 1/m. An isolated nexus with vortices is continuously deformable from the 't Hooft-Polyakov (m=0) monopole to the pure-gauge nexus-vortex complex (M=0). In the pure-gauge M=0 limit the homotopy Π2(SU(2)/U(1))=Z2\Pi_2(SU(2)/U(1))=Z_2 (or its analog for SU(N)) of the 't Hooft monopoles is no longer applicable, and is replaced by the center-vortex homotopy Π1(SU)N)/ZN)=ZN\Pi_1(SU)N)/Z_N)=Z_N.Comment: 27 pages, LaTeX, 3 .eps figure

    A conjecture on the infrared structure of the vacuum Schrodinger wave functional of QCD

    Get PDF
    The Schrodinger wave functional for the d=3+1 SU(N) vacuum is a partition function constructed in d=4; the exponent 2S in the square of the wave functional plays the role of a d=3 Euclidean action. We start from a gauge-invariant conjecture for the infrared-dominant part of S, based on dynamical generation of a gluon mass M in d=4. We argue that the exact leading term, of O(M), in an expansion of S in inverse powers of M is a d=3 gauge-invariant mass term (gauged non-linear sigma model); the next leading term, of O(1/M), is a conventional Yang-Mills action. The d=3 action that is the sum of these two terms has center vortices as classical solutions. The d=3 gluon mass, which we constrain to be the same as M, and d=3 coupling are related through the conjecture to the d=4 coupling strength, but at the same time the dimensionless ratio in d=3 of mass to coupling squared can be estimated from d=3 dynamics. This allows us to estimate the QCD coupling αs(M2)\alpha_s(M^2) in terms of this strictly d=3 ratio; we find a value of about 0.4, in good agreement with an earlier theoretical value but a little low compared to QCD phenomenology. The wave functional for d=2+1 QCD has an exponent that is a d=2 infrared-effective action having both the gauge-invariant mass term and the field strength squared term, and so differs from the conventional QCD action in two dimensions, which has no mass term. This conventional d=2 QCD would lead in d=3 to confinement of all color-group representations. But with the mass term (again leading to center vortices), N-ality = 0 mod N representations are not confined.Comment: 15 pages, no figures, revtex

    Relativistic center-vortex dynamics of a confining area law

    Full text link
    We offer a physicists' proof that center-vortex theory requires the area in the Wilson-loop area law to involve an extremal area. Area-law dynamics is determined by integrating over Wilson loops only, not over surface fluctuations for a fixed loop. Fluctuations leading to to perimeter-law corrections come from loop fluctuations as well as integration over finite -thickness center-vortex collective coordinates. In d=3 (or d=2+1) we exploit a contour form of the extremal area in isothermal which is similar to d=2 (or d=1+1) QCD in many respects, except that there are both quartic and quadratic terms in the action. One major result is that at large angular momentum \ell in d=3+1 the center-vortex extremal-area picture yields a linear Regge trajectory with Regge slope--string tension product \alpha'(0)K_F of 1/(2\pi), which is the canonical Veneziano/string value. In a curious effect traceable to retardation, the quark kinetic terms in the action vanish relative to area-law terms in the large-\ell limit, in which light-quark masses \sim K_F^{1/2} are negligible. This corresponds to string-theoretic expectations, even though we emphasize that the extremal-area law is not a string theory quantum-mechanically. We show how some quantum trajectory fluctuations as well as non-leading classical terms for finite mass yield corrections scaling with \ell^{-1/2}. We compare to old semiclassical calculations of relativistic q\bar{q} bound states at large \ell, which also yield asymptotically-linear Regge trajectories, finding agreement with a naive string picture (classically, not quantum-mechanically) and disagreement with an effective-propagator model. We show that contour forms of the area law can be expressed in terms of Abelian gauge potentials, and relate this to old work of Comtet.Comment: 20 pages RevTeX4 with 3 .eps figure

    Speculations on Primordial Magnetic Helicity

    Full text link
    We speculate that above or just below the electroweak phase transition magnetic fields are generated which have a net helicity (otherwise said, a Chern-Simons term) of order of magnitude NB+NLN_B + N_L, where NB,LN_{B,L} is the baryon or lepton number today. (To be more precise requires much more knowledge of B,L-generating mechanisms than we currently have.) Electromagnetic helicity generation is associated (indirectly) with the generation of electroweak Chern-Simons number through B+L anomalies. This helicity, which in the early universe is some 30 orders of magnitude greater than what would be expected from fluctuations alone in the absence of B+L violation, should be reasonably well-conserved through the evolution of the universe to around the times of matter dominance and decoupling, because the early universe is an excellent conductor. Possible consequences include early structure formation; macroscopic manifestations of CP violation in the cosmic magnetic field (measurable at least in principle, if not in practice); and an inverse-cascade dynamo mechanism in which magnetic fields and helicity are unstable to transfer to larger and larger spatial scales. We give a quasi-linear treatment of the general-relativistic MHD inverse cascade instability, finding substantial growth for helicity of the assumed magnitude out to scales lMϵ1\sim l_M\epsilon^{-1}, where ϵ\epsilon is roughly the B+L to photon ratio and lMl_M is the magnetic correlation length. We also elaborate further on an earlier proposal of the author for generation of magnetic fields above the EW phase transition.Comment: Latex, 23 page

    Baryon number non-conservation and phase transitions at preheating

    Get PDF
    Certain inflation models undergo pre-heating, in which inflaton oscillations can drive parametric resonance instabilities. We discuss several phenomena stemming from such instabilities, especially in weak-scale models; generically, these involve energizing a resonant system so that it can evade tunneling by crossing barriers classically. One possibility is a spontaneous change of phase from a lower-energy vacuum state to one of higher energy, as exemplified by an asymmetric double-well potential with different masses in each well. If the lower well is in resonance with oscillations of the potential, a system can be driven resonantly to the upper well and stay there (except for tunneling) if the upper well is not resonant. Another example occurs in hybrid inflation models where the Higgs field is resonant; the Higgs oscillations can be transferred to electroweak (EW) gauge potentials, leading to rapid transitions over sphaleron barriers and consequent B+L violation. Given an appropriate CP-violating seed, we find that preheating can drive a time-varying condensate of Chern-Simons number over large spatial scales; this condensate evolves by oscillation as well as decay into modes with shorter spatial gradients, eventually ending up as a condensate of sphalerons. We study these examples numerically and to some extent analytically. The emphasis in the present paper is on the generic mechanisms, and not on specific preheating models; these will be discussed in a later paper.Comment: 10 pages, 7 figures included, revtex, epsf, references adde
    corecore