12 research outputs found

    Effect of plasticizers on the moisture migration behavior of low-amylose starch films during drying

    No full text
    We report the synergistic and competitive interactions between multiple plasticizers in plasticized low-amylose starch that result in either enhanced or reduced water migration fluxes and effective moisture diffusivities. The starch was plasticized using glycerol and xylitol either individually or in 1:1 combination. The water migration fluxes and moisture diffusivities were higher in xylitol plasticized films compared to the glycerol plasticized ones. For low plasticizer concentrations, the presence of both the plasticizers competitively reduced the effective moisture diffusivities and moisture migration fluxes due to antiplasticization. However, at higher plasticizer contents (at and above 15 wt%), the presence of multiple plasticizers enhanced the moisture migration fluxes and effective moisture diffusivities due to synergistic plasticization. The moisture migration fluxes and effective moisture diffusivities exhibited both moisture and plasticizer concentration dependence and the former was found to be stronger than the latter. These findings can be used for designing and controlling the vapor barrier properties of starch-based bioplastics during drying and formulation phase

    Assessing the construct validity of five nutrient profiling systems using diet modeling with linear programming

    Get PDF
    International audienceNutrient profiling classifies individual food products according to their nutrient content. According to the WHO (World Health Organization), validation is a key step in the development of a nutrient profiling system. The aim was to assess the construct validity of five European nutrient profiling systems (Choices, Keyhole, (AFSSA), European Commission (EC) system and FoodProfiler). Construct validity was assessed for each of the five-selected nutrient profiling systems by testing whether healthy foods (that is, identified as eligible by the system) make healthy diets, and unhealthy foods (that is, non-eligible) make unhealthy diets, using diet modeling. The AFSSA, EC and FoodProfiler systems were identified as valid, but differences in their levels of permissiveness suggested some misclassified food products. The two other systems failed the construct validity assessment. Among these three systems, the EC system is the less demanding in terms of nutritional information, it would, therefore, be the easiest to implement for regulating nutrition and health claims in Europe

    The simplified nutrient profiling system (SENS) adequately ranks foods in relation to the overall nutritional quality of diets: a validation study

    No full text
    International audienceBackground/objectives We aimed to validate the simplified nutrient profiling system (SENS) algorithm based on its ability to rank foods across the four SENS classes in relation to overall nutritional quality of both observed diets and nutritionally optimized diets. Subjects/methods Foods and beverages from the French nutritional composition database were classified according to SENS. Diets consumed by French adults in the latest national dietary survey (>19 years, n = 1719) were divided into four nutritional quality levels, and average daily frequencies (number of portions per day) of foods from the four SENS classes were compared between the four levels. Then, for each individual observed diet, one iso-caloric and nutritionally adequate diet was optimized, and variations in daily frequencies of foods from each SENS class between observed and optimized diets were estimated. Results In observed diets, as overall nutritional quality level of diet increased, daily frequency increased for Class-1 foods (3.5 to 8.7 portions/d) and decreased for Class-4 foods (6.8 to 3.0 portions/day). From observed to optimized diets, daily frequency increased for Class-1 foods for 98.4% of individuals and decreased for Class-4 foods for 94.2% of individuals. Class-2 and Class-3 foods also followed patterns that fit the expected ranking. Conclusions Results from two WHO-recommended validation approaches showed that the SENS algorithm adequately ranks foods according to their contribution to overall nutritional quality of diets, which is a pre-requisite to use for simplified nutritional labeling in Europe
    corecore