96 research outputs found

    Genital HSV-2 Infection Induces Short-Term NK Cell Memory

    Get PDF
    NK cells are known as innate immune cells that lack immunological memory. Recently, it has been shown that NK cells remember encounters with chemical haptens that induce contact hypersensitivity and cytomegalovirus infection. Here, we show the existence of NK cell memory following HSV-2 infection. Stimulation with HSV-2 Ags led to higher IFNγ production in NK cells that were exposed 30 days previously to HSV-2, compared to NK cells from naïve mice. More importantly, this increased production of IFNγ in NK cells was independent of B- and T- lymphocytes and specific for the HSV-2 Ags. We also showed that previously exposed NK cells in a B- and T-lymphocyte free environment mediate protection against HSV-2 infection and they are necessary for the protection of mice against HSV-2 infection. Collectively, NK cells remember prior HSV-2 encounters independent of B- and T- lymphocytes leading to protection against HSV-2 mediated morbidity and mortality upon re-exposure

    Salivary Gland NK Cells Are Phenotypically and Functionally Unique

    Get PDF
    Natural killer (NK) cells and CD8+ T cells play vital roles in containing and eliminating systemic cytomegalovirus (CMV). However, CMV has a tropism for the salivary gland acinar epithelial cells and persists in this organ for several weeks after primary infection. Here we characterize a distinct NK cell population that resides in the salivary gland, uncommon to any described to date, expressing both mature and immature NK cell markers. Using RORγt reporter mice and nude mice, we also show that the salivary gland NK cells are not lymphoid tissue inducer NK-like cells and are not thymic derived. During the course of murine cytomegalovirus (MCMV) infection, we found that salivary gland NK cells detect the infection and acquire activation markers, but have limited capacity to produce IFN-γ and degranulate. Salivary gland NK cell effector functions are not regulated by iNKT or Treg cells, which are mostly absent in the salivary gland. Additionally, we demonstrate that peripheral NK cells are not recruited to this organ even after the systemic infection has been controlled. Altogether, these results indicate that viral persistence and latency in the salivary glands may be due in part to the presence of unfit NK cells and the lack of recruitment of peripheral NK cells

    Mifepristone Increases the Cytotoxicity of Uterine Natural Killer Cells by Acting as a Glucocorticoid Antagonist via ERK Activation

    Get PDF
    Background: Mifepristone (RU486), a potent antagonist of progesterone and glucocorticoids, is involved in immune regulation. Our previous studies demonstrated that mifepristone directly augments the cytotoxicity of human uterine natural killer (uNK) cells. However, the mechanism responsible for this increase in cytotoxicity is not known. Here, we explored whether the increased cytotoxicity in uNK cells produced by mifepristone is due to either anti-progesterone or anti-glucocorticoid activity, and also investigated relevant changes in the mitogen-activated protein kinase (MAPK) pathway. Methodology/Principal Findings: Uterine NK cells were isolated from decidual samples and incubated with different concentrations of progesterone, cortisol, or mifepristone. The cytotoxicity and perforin expression of uNK cells were detected by mitochondrial lactate dehydrogenase-based MTS staining and flow cytometry assays, respectively. Phosphorylation of components of the MAPK signaling pathway was detected by Western blot. Cortisol attenuated uNK cell-mediated cytotoxicity in a concentration-dependent manner whereas progesterone had no effect. Mifepristone alone increased the cytotoxicity and perforin expression of uNK cells; these effects were blocked by cortisol. Furthermore, mifepristone increased the phosphorylation of ERK1/2 in a cortisol-reversible manner. Specific ERK1/2 inhibitor PD98059 or U0126 blocked cortisol- and mifepristone-induced responses in uNK cells

    Targeting of Natural Killer Cells by Rabbit Antithymocyte Globulin and Campath-1H: Similar Effects Independent of Specificity

    Get PDF
    T cell depleting strategies are an integral part of immunosuppressive regimens widely used in the hematological and solid organ transplant setting. Although it is known to induce lymphocytopenia, little is known about the effects of the polyclonal rabbit antithymocyte globulin (rATG) or the monoclonal anti-CD52 antibody alemtuzumab on Natural Killer (NK) cells in detail. Here, we demonstrate that induction therapy with rATG following kidney/pancreas transplantation results in a rapid depletion of NK cells. Treatment of NK cells with rATG and alemtuzumab in vitro leads to impairment of cytotoxicity and induction of apoptosis even at a 10-fold lower concentration (0.1 µg/ml) compared with T and B cells. By generating Fc-parts of rATG and alemtuzumab we illustrate that their ligation to FcγRIII (CD16) is sufficient for the significant induction of degranulation, apoptosis and inflammatory cytokine release (FasL, TNFα and IFNγ) exclusively in CD3−CD56dim NK cells whereas application of rATG and alemtuzumab F(ab) fragments abolishes these effects. These findings are of general importance as our data suggest that NK cells are also mediators of the clinically relevant cytokine release syndrome and that their targeting by therapeutic antibodies should be considered as they are functionally relevant for the effective clearance of opportunistic viral infections and anti-tumor activity posttransplantation

    IL-1R8 is a checkpoint in NK cells regulating anti-tumour and anti-viral activity

    Get PDF
    Interleukin-1 receptor 8 (IL-1R8, also known as single immunoglobulin IL-1R-related receptor, SIGIRR, or TIR8) is a member of the IL-1 receptor (ILR) family with distinct structural and functional characteristics, acting as a negative regulator of ILR and Toll-like receptor (TLR) downstream signalling pathways and inflammation. Natural killer (NK) cells are innate lymphoid cells which mediate resistance against pathogens and contribute to the activation and orientation of adaptive immune responses. NK cells mediate resistance against haematopoietic neoplasms but are generally considered to play a minor role in solid tumour carcinogenesis. Here we report that IL-1R8 serves as a checkpoint for NK cell maturation and effector function. Its genetic blockade unleashes NK-cell-mediated resistance to hepatic carcinogenesis, haematogenous liver and lung metastasis, and cytomegalovirus infection

    NK cells and type 1 innate lymphoid cells: partners in host defense

    Full text link
    Innate lymphoid cells (ILCs) are effectors and regulators of innate immunity and tissue modeling and repair. Researchers have identified subsets of ILCs with differing functional activities, capacities to produce cytokines and transcription factors required for development and function. Natural killer (NK) cells represent the prototypical member of the ILC family. Together with ILC1s, NK cells constitute group 1 ILCs, which are characterized by their capacity to produce interferon-γ and their functional dependence on the transcription factor T-bet. NK cells and ILC1s are developmentally distinct but share so many features that they are difficult to distinguish, particularly under conditions of infection and inflammation. Here we review current knowledge of NK cells and the various ILC1 subset

    Bovine cryptosporidiosis: impact, host-parasite interaction and control strategies

    Get PDF
    International audienceAbstractGastrointestinal disease caused by the apicomplexan parasite Cryptosporidium parvum is one of the most important diseases of young ruminant livestock, particularly neonatal calves. Infected animals may suffer from profuse watery diarrhoea, dehydration and in severe cases death can occur. At present, effective therapeutic and preventative measures are not available and a better understanding of the host–pathogen interactions is required. Cryptosporidium parvum is also an important zoonotic pathogen causing severe disease in people, with young children being particularly vulnerable. Our knowledge of the immune responses induced by Cryptosporidium parasites in clinically relevant hosts is very limited. This review discusses the impact of bovine cryptosporidiosis and describes how a thorough understanding of the host–pathogen interactions may help to identify novel prevention and control strategies

    Carotidynia

    No full text
    • …
    corecore