280 research outputs found

    Fault weakening due to CO2 degassing in the Northern Apennines: short- and long-term processes

    Get PDF
    The influx of fluids into fault zones can trigger two main types of weakening processes that operate over different timescales and facilitate fault movement and earthquake nucleation. Short-term and long-term weakening mechanisms along faults require a continuous fluid supply near the base of the brittle crust, a condition satisfied in the extended/extending area of the Northern Apennines of Italy. Here carbon mass balance calculations, coupling aquifer geochemistry to isotopic and hydrological data, define the presence of a large flux (∼12,160 t d-1) of deep-seated CO2 centred in the extended sector of the area. In the currently active extending area, CO2 fluid overpressures at ∼85% of the lithostatic load have been documented in two deep (4-5 km) boreholes. In the long-term, field studies on an exhumed regional low-angle normal fault show that during the entire fault history, fluids reacted with fine-grained cataclasites in the fault core to produce aggregates of weak, phyllosilicate-rich fault rocks that deform by fluid assisted frictional-viscous creep at sub-Byerlee friction values (μ < 0.3). In the short-term, fluids can be stored in structural traps, such as beneath mature faults, and stratigraphical traps such as Triassic evaporites. Both examples preserve evidence for multiple episodes of hydrofracturing induced by short-term cycles of fluid pressure build-up and release. Geochemical data on the regional-scale CO2 degassing process can therefore be related to field observations on fluid rock interactions to provide new insights into the deformation processes responsible for active seismicity in the Northern Apennines

    Wettability of soft PLGA surfaces predicted by experimentally augmented atomistic models

    Get PDF
    A challenging topic in surface engineering is predicting the wetting properties of soft interfaces with different liquids. However, a robust computational protocol suitable for predicting wettability with molecular precision is still lacking. In this article, we propose a workflow based on molecular dynamics simulations to predict the wettability of polymer surfaces and test it against the experimental contact angle of several polar and nonpolar liquids, namely water, formamide, toluene, and hexane. The specific case study addressed here focuses on a poly(lactic-co-glycolic acid) (PLGA) flat surface, but the proposed experimental-modeling protocol may have broader fields of application. The structural properties of PLGA slabs have been modeled on the surface roughness determined with microscopy measurements, while the computed surface tensions and contact angles were validated against standardized characterization tests, reaching a discrepancy of less than 3% in the case of water. Overall, this work represents the initial step toward an integrated multiscale framework for predicting the wettability of more complex soft interfaces, which will eventually take into account the effect of surface topology at higher scales and synergically be employed with experimental characterization techniques

    High sensitivity C-reactive protein increases the risk of carotid plaque instability in male dyslipidemic patients

    Get PDF
    Background: The aim of this study was to evaluate how the high sensitivity C-reactive protein (hs-CRP) values influence the risk of carotid plaque instability in association with other cardiovascular risk factors. Methods: One hundred and fifty-six carotid plaques from both symptomatic and asymptomatic patients requiring surgical carotid endarterectomy were retrospectively collected. According to the modified American Heart Association, atherosclerosis plaques have been histologically distinguished into unstable and stable. The following anamnestic and hematochemical data were also considered: age, gender, hypertension, diabetes mellitus, smoking habit, therapy, low-density lipoprotein (LDL)-C, kidney failure and hs-CRP. Results: The results of our study clearly show that high levels of hs-CRP significantly increase the carotid plaque instability in dyslipidemic patients. Specifically, a 67% increase of the risk of carotid plaque instability was observed in patients with high LDL-C. Therefore, the highest risk was observed in male dyslipidemic patients 2333 (95% CI 0.73-7.48) and in aged female patients 2713 (95% CI 0.14-53.27). Discussion: These data strongly suggest a biological relationship between the hs-CRP values and the alteration of lipidic metabolism mostly in male patients affected by carotid atherosclerosis. The measurement of hs-CRP might be useful as a potential screening tool in the prevention of atheroscletotic disease

    Surface gas measurements and related studies for the characterization and monitoring of geological CO2 storage sites; experiences at Weyburn and in Salah.

    Get PDF
    Preliminary baseline soil gas data collected in the summer and autumn of 2001 above the Phase 1A injection area of the EnCana Enhanced Oil Recovery project at the Weyburn oilfield in south Saskatchewan was presented at GHGT-6 in Kyoto. Data can now be presented for all three years of the study with conclusions, the predominant one being that the major controls on soil gas levels are seasonal and meteorological with no indications of leakage from depth. In the autumns of 2002 and 2003 further in situ monitoring of CO2, CO2 flux, O2, CH4, radon (222Rn) and thoron (220Rn) was carried out. Soil gas samples were also collected for laboratory analysis of helium, permanent gases, sulphur species and light hydrocarbons. All sampling was repeated over the same 360 point sampling grid and more detailed profiles for both follow-up years. Marked changes in CO2 levels (especially flux) for each of the three-year datasets indicate changes in surface conditions, rather than CO2 from a deeper source. The radon and thoron data was found to be similar for the three years but appears to vary in response to drift composition, and seasonal effects, rather than migration from a deep source. In 2003 further work was agreed in addition to the main grid and profile data. A control area was sampled for the same suite of gases, 10km to the northwest of the oil field. It included similar topography, land use and drift composition to the main sampling grid. There were 35 sample locations on a 7 x 5 point grid with 100m spacing and two additional sites. Early conclusions indicate that the soil gas results in the control area are very similar to those from the main grid, vindicating control site selection and further supporting a lack of deeply sourced CO2 over the injection area. Along with the control site, five zones of possible CO2 leakage were also surveyed and sampled. Two cross a river lineament that may be associated with deep faulting, two were abandoned oil well sites and one site overlays a deep salt dissolution feature. (Unfortunately CO2 flux and gamma measurements were not carried out at these sites.) A northeast/southwest trending lineament, just north of the main grid, was sampled along two profiles perpendicular to the feature, with an increased density of sampling over the feature. The feature generally followed an incised river valley and anomalous CO2 was only detected on the valley floor, where it would be expected as there was lush vegetation in this zone. There were no coincident anomalies for other gases. Soils around two abandoned wells were also sampled. A 16-site grid was surveyed around each well. One well had been completely abandoned and the other was suspended due to failed casing. Such boreholes represent possible points of weakness that may be routes for CO2 migration. The well with failed casing had weakly anomalous CO2 locally to the south, again unmatched for other gases. The fully abandoned well had background CO2 values. Two perpendicular profiles of 10 sites at 25m spacing were sampled for soil gas over the mapped centre of the dissolution feature. Background values were obtained. In 2003 two vertical profiles were performed both indicating an increase in CO2 to a depth maximum of 1.80m; this increase is matched by a corresponding decrease only in O2, indicating biological respiration. Radon concentration indicated no anomalies. Portable gamma spectrometric data was collected in 2003 over the west-centre area of the grid, the profiles and over the control grid. The composition of soils from both areas was found to be very similar.PublishedBerkeley, California4.5. Degassamento naturaleope

    Constructivism: Defense or a Continual Critical Appraisal – A Response to Gil-Pérez et al.

    Get PDF
    Abstract. This commentary is a critical appraisal of Gil-Pérez et al.’s (2002) conceptualization of constructivism. It is argued that the following aspects of their presentation are problematic: (a) Although the role of controversy is recognized, the authors implicitly subscribe to a Kuhnian perspective of ‘normal’ science; (b) Authors fail to recognize the importance of von Glasersfeld’s contribution to the understanding of constructivism in science education; (c) The fact that it is not possible to implement a constructivist pedagogy without a constructivist epistemology has been ignored; and (d) Failure to recognize that the metaphor of the ‘student as a developing scientist’ facilitates teaching strategies as students are confronted with alternative/rival/conflicting ideas. Finally, we have shown that constructivism in science education is going through a process of continual critical appraisals

    TIMP3 Is Reduced in Atherosclerotic Plaques From Subjects With Type 2 Diabetes and Increased by SirT1

    Get PDF
    Atherosclerosis is accelerated in subjects with type 2 diabetes by unknown mechanisms. We identified tissue inhibitor of metalloproteinase 3 (TIMP3), the endogenous inhibitor of A disintegrin and metalloprotease domain 17 (ADAM17) and other matrix metalloproteinases (MMPs), as a gene modifier for insulin resistance and vascular inflammation in mice. We tested its association with atherosclerosis in subjects with type 2 diabetes and identified Sirtuin 1 (SirT1) as a major regulator of TIMP3 expression

    ITCH E3 ubiquitin ligase downregulation compromises hepatic degradation of branched-chain amino acids

    Get PDF
    Objective: Metabolic syndrome, obesity, and steatosis are characterized by a range of dysregulations including defects in ubiquitin ligase tagging proteins for degradation. The identification of novel hepatic genes associated with fatty liver disease and metabolic dysregulation may be relevant to unravelling new mechanisms involved in liver disease progression Methods: Through integrative analysis of liver transcriptomic and metabolomic obtained from obese subjects with steatosis, we identified itchy E ubiquitin protein ligase (ITCH) as a gene downregulated in human hepatic tissue in relation to steatosis grade. Wild-type or ITCH knockout mouse models of non-alcoholic fatty liver disease (NAFLD) and obesity-related hepatocellular carcinoma were analyzed to dissect the causal role of ITCH in steatosis Results: We show that ITCH regulation of branched-chain amino acids (BCAAs) degradation enzymes is impaired in obese women with grade 3 compared with grade 0 steatosis, and that ITCH acts as a gatekeeper whose loss results in elevation of circulating BCAAs associated with hepatic steatosis. When ITCH expression was specifically restored in the liver of ITCH knockout mice, ACADSB mRNA and protein are restored, and BCAA levels are normalized both in liver and plasma Conclusions: Our data support a novel functional role for ITCH in the hepatic regulation of BCAA metabolism and suggest that targeting ITCH in a liver-specific manner might help delay the progression of metabolic hepatic diseases and insulin resistance

    New insights into the magmatic-hydrothermal system and volatile budget of Lastarria volcano, Chile: Integrated results from the 2014 IAVCEI CCVG 12th Volcanic Gas Workshop.

    Get PDF
    Recent geophysical evidence for large-scale regional crustal inflation and localized crustal magma intrusion has made Lastarria volcano (northern Chile) the target of numerous geological, geophysical, and geochemical studies. The chemical composition of volcanic gases sampled during discrete campaigns from Lastarria volcano indicated a well-developed hydrothermal system from direct fumarole samples in A.D. 2006, 2008, and 2009, and shallow magma degassing using measurements from in situ plume sampling techniques in 2012. It is unclear if the differences in measured gas compositions and resulting interpretations were due to artifacts of the different sampling methods employed, short-term excursions from baseline due to localized changes in stress, or a systematic change in Lastarria's magmatic-hydrothermal system between 2009 and 2012. Integrated results from a two-day volcanic gas sampling and measurement campaign during the 2014 International Association of Volcanology and Chemistry of the Earth's Interior (IAVCEI) Commission on the Chemistry of Volcanic Gases (CCVG) 12th Gas Workshop are used here to compare and evaluate current gas sampling and measurement techniques, refine the existing subsurface models for Lastarria volcano, and provide new constraints on its magmatic-hydrothermal system and total degassing budget. While compositional differences among sampling methods are present, distinct compositional changes are observed, which if representative of longterm trends, indicate a change in Lastarria's overall magmatic-hydrothermal system. The composition of volcanic gases measured in 2014 contained high proportions of relatively magma- and water-soluble gases consistent with degassing of shallow magma, and in agreement with the 2012 gas composition. When compared with gas compositions measured in 2006-2009, higher relative H2O/CO2 ratios combined with lower relative CO2/St and H2O/St and stable HCl/St ratios (where St is total S [SO2 + H2S]) are observed in 2012 and 2014. These compositional changes suggest variations in the magmatic-hydrothermal system between 2009 and 2012, with possible scenarios to explain these trends including: (1) decompression-induced degassing due to magma ascent within the shallow crust; (2) crystallization-induced degassing of a stalled magma body; (3) depletion of the hydrothermal system due to heating, changes in local stress, and/or minimal precipitation; and/or (4) acidification of the hydrothermal system. These scenarios are evaluated and compared against the geophysical observations of continuous shallow inflation at ~8 km depth between 1997 and 2016, and near-surface ( < 1 km) inflation between 2000 and 2008, to further refine the existing subsurface models. Higher relative H2O/CO2 observed in 2012 and 2014 is not consistent with the depletion or acidification of a hydrothermal system, while all other observations are consistent with the four proposed models. Based on these observations, we find that scenarios 1 or 2 are the most likely to explain the geochemical and geophysical observations, and propose that targeted shallow interferometric synthetic-aperture radar (InSAR) studies could help discriminate between these two scenarios. Lastly, we use an average SO2 flux of 604 \ub1 296 t/d measured on 22 November 2014, along with the average gas composition and diffuse soil CO2 flux measurements, to estimate a total volatile flux from Lastarria volcano in 2014 of ~12,400 t/d, which is similar to previous estimates from 2012
    corecore