37 research outputs found

    Functionalised metal-organic frameworks: a novel approach to stabilising single metal atoms

    Get PDF
    We have investigated the potential of metal-organic frameworks for immobilising single atoms of transition metals using a model system of Pd supported on NH2-MIL-101(Cr). Our Transmission Electron Microscopy and in-situ Raman spectroscopy results give evidence for the first time that functionalised metal-organic frameworks may support, isolate and stabilise single atoms of palladium. Using Thermal Desorption Spectroscopy we were able to evaluate the proportion of single Pd atoms. Furthermore, in a combined theoretical-experimental approach, we show that the H-H bonds in a H2 molecule elongate by over 15% through the formation of a complex with single atoms of Pd. Such deformation would affect any hydrogenation reaction and thus the single atoms supported on metal-organic frameworks may become promising single atom catalysts in the future

    Hydrogen storage properties of Mg-Ni nanoparticles

    No full text
    The aim of this work is to investigate metal hydride transformation in Magnesium (Mg) nanoparticles decorated by Nickel (Ni). The samples were synthesized by Inert Gas Condensation: Mg single crystal nanoparticles were deposited on a metal substrate and subsequently their surface was exposed to evaporation of Ni. Structural analysis was made by Synchrotron Radiation Powder X-ray Diffraction and thermodynamic measurements by Sieverts apparatus. Ni decoration significantly improves the hydrogen release and uptake kinetics of the nanoparticles. The results connect the formation of Mg2Ni and Mg2NiH4 phases to the enhancement of hydrogen sorption properties

    Hydrogen storage and phase transformations in Mg-Pd nanoparticles

    No full text
    Microstructure refinement and synergic coupling among different phases are currently explored strategies to improve the hydrogen storage properties of traditional materials. In this work, we apply a combination of these methods and synthesize Mg-Pd composite nanoparticles by inert gas condensation of Mg vapors followed by vacuum evaporation of Pd clusters. Irreversible formation of the Mg6Pd intermetallic phase takes place upon vacuum annealing, resulting in Mg/Mg6Pd composite nanoparticles. Their hydrogen storage properties are investigated and connected to the undergoing phase transformations by gas-volumetric techniques and in-situ synchrotron radiation powder X-ray diffraction. Depending on temperature and hydrogen pressure, the Mg6Pd transforms reversibly into different Mg-Pd intermetallic compounds, thus influencing both the thermodynamics and kinetics of the metal-hydride transformation

    Formation of hollow structures through diffusive phase transition across a membrane

    No full text
    We report on the formation of hollow structures driven by a phase transition that proceeds via diffusion through a membrane. The mechanism is demonstrated for Mg/MgO core/shell nanoparticles: When they undergo successive metal-hydride transitions at sufficiently high temperature, the core material progressively diffuses outward and evaporates, leaving a hollow shell with the original shape and thickness. This phenomenon might become a general approach to the design of materials with controlled porosity

    Metal-hydride transformation Kinetics in Mg nanoparticles

    No full text
    The hydrogen sorption kinetics of magnesium nanoparticles prepared by inert gas condensation and coated by a magnesium oxide layer were investigated by a volumetric apparatus. The metal-hydride transformation was studied by transmission electron microscopy of the nanoparticles both in the as prepared state and after hydrogen cycling

    Insight into the decomposition pathway of the complex hydride Al3Li4(BH4)13

    No full text
    The decomposition pathway of the complex hydride Al3Li4(BH4)13 is in the focus of this study. Initially the compound attracted great interest due to its high H2 capacity (17.2 wt.%) and desorption at moderate temperatures (<100 °C). This work sheds light on its decomposition reaction by a unique experimental setup of thermogravimetry combined with spectroscopic gas phase analysis (FT-IR and MS) at ambient conditions. It is observed that the compound itself is metastable and decomposes immediately into its components, solid LiBH4 and Al(BH4)3 which is monitored in the gas phase. Carbon addition decreases the observed mass loss and the spectroscopic gas phase analysis is used to learn about the impact of carbon addition
    corecore