4 research outputs found

    Low-efficiency long gamma-ray bursts: a case study with AT2020blt

    Full text link
    The Zwicky Transient Facility recently announced the detection of an optical transient AT2020blt at redshift z = 2.9, consistent with the afterglow of an on-axis gamma-ray burst. However, no prompt emission was observed. We analyse AT2020blt with detailed models, showing the data are best explained as the afterglow of an on-axis long gamma-ray burst, ruling out other hypotheses such as a cocoon and a low-Lorentz factor jet. We search Fermi data for prompt emission, setting deeper upper limits on the prompt emission than in the original detection paper. Together with KONUS-Wind observations, we show that the gamma-ray efficiency of AT2020blt is â‰Č0.3−4.5 percent⁠. We speculate that AT2020blt and AT2021any belong to the low-efficiency tail of long gamma-ray burst distributions that are beginning to be readily observed due to the capabilities of new observatories like the Zwicky Transient Facility.</p

    The first JWST spectrum of a GRB afterglow: No bright supernova in observations of the brightest GRB of all time, GRB 221009A

    No full text
    International audienceWe present JWST and Hubble Space Telescope (HST) observations of the afterglow of GRB 221009A, the brightest gamma-ray burst (GRB) ever observed. Observations obtained with NIRSPEC (0.6-5.5 micron) and MIRI (5-12 micron) 12 days after the burst are the first mid-IR spectroscopy performed for a GRB. Assuming the underlying slope is that of a single power-law, we obtain ÎČ≈0.35\beta \approx 0.35 and AV=4.9A_V = 4.9, in excess of the notional Galactic value. This is suggestive of extinction above the notional Galactic value, possibly due to patchy extinction within the Milky Way or dust in the GRB host galaxy. It further implies that the X-ray and optical/IR regimes are not on the same branch of the synchrotron spectrum of the afterglow. If the cooling break lies between the X-ray and optical/IR, then the temporal declines would only match for a post jet break, ISM medium and electron index with p<2p<2. The shape of the JWST spectrum is near-identical in the optical/nIR to X-shooter spectroscopy obtained at 0.5 days and to later time observations with HST. The lack of spectral evolution suggests the SNe is either substantially fainter or bluer than SN~1998bw. Our {\em HST} observations also reveal a disc-like host galaxy, viewed close to edge-on that further complicates the isolation of any supernova component. The host galaxy appears rather typical amongst long-GRB hosts and suggests that the extreme properties of GRB 221009A are not directly tied to its galaxy-scale environment

    A very luminous jet from the disruption of a star by a massive black hole

    Full text link
    Tidal disruption events (TDEs) are bursts of electromagnetic energy that are released when supermassive black holes at the centres of galaxies violently disrupt a star that passes too close1. TDEs provide a window through which to study accretion onto supermassive black holes; in some rare cases, this accretion leads to launching of a relativistic jet2–9, but the necessary conditions are not fully understood. The best-studied jetted TDE so far is Swift J1644+57, which was discovered in γ-rays, but was too obscured by dust to be seen at optical wavelengths. Here we report the optical detection of AT2022cmc, a rapidly fading source at cosmological distance (redshift z = 1.19325) the unique light curve of which transitioned into a luminous plateau within days. Observations of a bright counterpart at other wavelengths, including X-ray, submillimetre and radio, supports the interpretation of AT2022cmc as a jetted TDE containing a synchrotron ‘afterglow’, probably launched by a supermassive black hole with spin greater than approximately 0.3. Using four years of Zwicky Transient Facility10 survey data, we calculate a rate of 0.02−0.01+0.04 per gigapascals cubed per year for on-axis jetted TDEs on the basis of the luminous, fast-fading red component, thus providing a measurement complementary to the rates derived from X-ray and radio observations11. Correcting for the beaming angle effects, this rate confirms that approximately 1 per cent of TDEs have relativistic jets. Optical surveys can use AT2022cmc as a prototype to unveil a population of jetted TDEs
    corecore