75 research outputs found

    Solvation and Protonation of Coumarin 102 in Aqueous Media - a Fluorescence Spectroscopic and Theoretical Study

    Get PDF
    The ground and excited state protonation of Coumarin 102 (C102), a fluorescent probe applied frequently in heterogeneous systems with an aqueous phase, has been studied in aqueous solutions by spectroscopic experiments and theoretical calculations. For the dissociation constant of the protonated form in the ground state, was obtained from the absorption spectra, for the excited state dissociation constant was obtained from the fluorescence spectra. These values were closely reproduced by theoretical calculations via a thermodynamic cycle – the value of also by calculations via the Förster cycle - using an implicit-explicit solvation model (polarized continuum model + addition of a solvent molecule). The theoretical calculations indicated that (i) in the ground state C102 occurs primarily as a hydrogen bonded water complex, with the oxo group as the binding site, (ii) this hydrogen bond becomes stronger upon excitation; (iii) in the ground state the amino nitrogen atom, in the excited state the carboxy oxygen atom is the protonation site. A comprehensive analysis of fluorescence decay data yielded the values kpr = 3.271010 M-1 s 1 for the rate constants of excited state protonation, and kdpr = 2.78108 s-1 for the rate constant of the reverse process (kpr and kdpr were treated as independent parameters). This, considering the relatively long fluorescence lifetimes of neutral C102 (6.02 ns) and its protonated form (3.06 ns) in aqueous media, means that a quasi-equilibrium state of excited state proton transfer is reached in strongly acidic solutions

    Insight of brain degenerative protein modifications in the pathology of neurodegeneration and dementia by proteomic profiling

    Full text link

    Democratic backsliding and economic performance: country report on Hungary

    No full text

    Solution and solid-state characterization of Eu(II) chelates: a possible route towards redox responsive MRI contrast agents.

    No full text
    We report the first solid state X-ray crystal structure for a Eu(II) chelate, [C(NH2)3]3[Eu(II)(DTPA)(H2O)].8H2O, in comparison with those for the corresponding Sr analogue, [C(NH2)3]3[Sr(DTPA)(H2O).8H2O and for [Sr(ODDA)].8H2O (DTPA5 = diethylenetriamine-N,N,N',N",N"-pentaacetate, ODDA2- =1,4,10,13-tetraoxa-7,16-diazacyclooctadecane-7,16-diacetate ). The two DTPA complexes are isostructural due to the similar ionic size and charge of Sr(2+) and Eu(2+). The redox stability of [Eu(II)(ODDA)(H2O)] and [Eu(II)(ODDM)]2- complexes has been investigated by cyclovoltammetry and UV/Vis spectrophotometry (ODDM4- =1,4,10,13-tetraoxa-7,16-diaza-cyclooctadecane-7,16-++ +dimalonate). The macrocyclic complexes are much more stable against oxidation than [Eu(II)(DTPA)(H2O)]3- (the redox potentials are E1/2 =-0.82 V, -0.92 V, and -1.35 V versus Ag/AgCl electrode for [Eu(III/II)(ODDA)(H2O)],[Eu(III/II)(ODDM)], and [Eu(III/II)(DTPA)(H2O)], respectively, compared with -0.63 V for Eu(III/II) aqua). The thermodynamic stability constants of [Eu(II)(ODDA)(H2O)], [Eu(II)(ODDM)]2-, [Sr(ODDA)(H2O)], and [Sr(ODDM)]2- were also determined by pH potentiometry. They are slightly higher for the EuII complexes than those for the corresponding Sr analogues (logK(ML)=9.85, 13.07, 8.66, and 11.34 for [Eu(II)(ODDA)(H2O)], [Eu(II)(ODDM)]2-, [Sr(ODDA)(H2O)], and [Sr(ODDM)]2-, respectively, 0.1M (CH3)4NCl). The increased thermodynamic and redox stability of the Eu(II) complex formed with ODDA as compared with the traditional ligand DTPA can be of importance when biomedical application is concerned. A variable-temperature 17O-NMR and 1H-nuclear magnetic relaxation dispersion (NMRD) study has been performed on [Eu(II)(ODDA)(H2O)] and [Eu(II)(ODDM)]2- in aqueous solution. [Eu(II)(ODDM)]2- has no inner-sphere water molecule which allowed us to use it as an outer-sphere model for [Eu(II)(ODDA)(H2O)]. The water exchange rate (k298(ex)= 0.43 x 10(9)s(-1)) is one third of that obtained for [Eu(II)(DTPA)(H2O)]3-. The variable pressure 17O-NMR study yielded a negative activation volume, deltaV (not=) = -3.9cm3mol(-1); this indicates associatively activated water exchange. This water exchange rate is in the optimal range to attain maximum proton relaxivities, which are, however, strongly limited by the fast rotation of the small molecular weight complex
    corecore