167 research outputs found

    Child maltreatment polyvictimization: Rates and short-term effects on adjustment in a representative Hong Kong sample

    Get PDF
    Objective: This article examines the unique effects of multiple forms of victimization, namely child abuse and neglect (CAN) and exposure to parental intimate partner violence (IPV), on children's self-blame, feelings of being threatened, self-esteem, and ability to control anger. Method: The cross-sectional study recruited a population-based sample of 2,062 children aged 12-17 years in Hong Kong. Structured questionnaires were used to collect data from the children. The prevalence rate of the co-occurrence of exposure to IPV and CAN in the Chinese population, and the unique impacts of exposure to IPV and CAN on children were examined. Results: The results show that 13.1% of the children had experienced CAN, and 6.5% had witnessed parental IPV. Among those families characterized by IPV, 61.1% were involved in child abuse in the preceding year of the study. Participants who had experienced both CAN and exposure to parental IPV reported lower levels of self-esteem and higher rates of being aggressive and violent, and feeling threatened. These children also reported the highest levels of feeling that their well-being was threatened and of blaming themselves for parental violence and parental discipline. Conclusions: The findings reemphasize the important need for public policy on child and youth victimization that encourages social workers and Child Protective Services to screen for child polyvictimization in cases of suspected/reported child abuse. © 2011 American Psychological Association.postprin

    Childhood sexual abuse associated with dating partner violence and suicidal ideation in a representative household sample in Hong Kong

    Get PDF
    This study investigated the prevalence and impact of childhood sexual abuse (CSA) on future intimate partner violence (IPV) in dating relationship in Hong Kong, China. A total of 1,154 Chinese adult respondents engaged in dating relationships were interviewed face-to-face about their CSA histories, childhood witnessing of parental violence, adult sexual victimization (ASV) by others and IPV victimization with their current dating partner. Self-reports also measured levels of suicidal ideation, self-esteem, and demographic details. Overall, 1.7% reported some form of CSA with a higher percentage being women. No gender differences were found in the prevalence of either ASV or IPV. Results showed that CSA had an independent effect on physical IPV and suicidal ideation. The odds of IPV were increased by behavioral and psychological factors of victims such as alcohol and drug abuse, sex with partner, and low self-esteem. The odds of suicidal ideation were also increased by drug abuse, childhood witnessing of parental psychological aggression, and low self-esteem. Clinical implications of results included screening for CSA victims and suicidal victims when treating IPV patients, tailoring treatment according to individual IPV victim's problems, correcting behaviors that are associated with risks of IPV, such as engagement in casual sex and substance abuse, and focusing not only on tangible services but also on the social and psychological aspects that are placing the victims at risk for IPV. © The Author(s) 2011.postprin

    DOSCATs: Double standards for protein quantification

    Get PDF
    The two most common techniques for absolute protein quantification are based on either mass spectrometry (MS) or on immunochemical techniques, such as western blotting (WB). Western blotting is most often used for protein identification or relative quantification, but can also be deployed for absolute quantification if appropriate calibration standards are used. MS based techniques offer superior data quality and reproducibility, but WB offers greater sensitivity and accessibility to most researchers. It would be advantageous to apply both techniques for orthogonal quantification, but workflows rarely overlap. We describe DOSCATs (DOuble Standard conCATamers), novel calibration standards based on QconCAT technology, to unite these platforms. DOSCATs combine a series of epitope sequences concatenated with tryptic peptides in a single artificial protein to create internal tryptic peptide standards for MS as well as an intact protein bearing multiple linear epitopes. A DOSCAT protein was designed and constructed to quantify five proteins of the NF-ÎșB pathway. For three target proteins, protein fold change and absolute copy per cell values measured by MS and WB were in excellent agreement. This demonstrates that DOSCATs can be used as multiplexed, dual purpose standards, readily deployed in a single workflow, supporting seamless quantitative transition from MS to WB

    Direct and Absolute Quantification of over 1800 Yeast Proteins via Selected Reaction Monitoring

    Get PDF
    Defining intracellular protein concentration is critical in molecular systems biology. Although strategies for determining relative protein changes are available, defining robust absolute values in copies per cell has proven significantly more challenging. Here we present a reference data set quantifying over 1800 Saccharomyces cerevisiae proteins by direct means using protein-specific stable-isotope labeled internal standards and selected reaction monitoring (SRM) mass spectrometry, far exceeding any previous study. This was achieved by careful design of over 100 QconCAT recombinant proteins as standards, defining 1167 proteins in terms of copies per cell and upper limits on a further 668, with robust CVs routinely less than 20%. The selected reaction monitoring-derived proteome is compared with existing quantitative data sets, highlighting the disparities between methodologies. Coupled with a quantification of the transcriptome by RNA-seq taken from the same cells, these data support revised estimates of several fundamental molecular parameters: a total protein count of ∌100 million molecules-per-cell, a median of ∌1000 proteins-per-transcript, and a linear model of protein translation explaining 70% of the variance in translation rate. This work contributes a “gold-standard” reference yeast proteome (including 532 values based on high quality, dual peptide quantification) that can be widely used in systems models and for other comparative studies. Reliable and accurate quantification of the proteins present in a cell or tissue remains a major challenge for post-genome scientists. Proteins are the primary functional molecules in biological systems and knowledge of their abundance and dynamics is an important prerequisite to a complete understanding of natural physiological processes, or dysfunction in disease. Accordingly, much effort has been spent in the development of reliable, accurate and sensitive techniques to quantify the cellular proteome, the complement of proteins expressed at a given time under defined conditions (1). Moreover, the ability to model a biological system and thus characterize it in kinetic terms, requires that protein concentrations be defined in absolute numbers (2, 3). Given the high demand for accurate quantitative proteome data sets, there has been a continual drive to develop methodology to accomplish this, typically using mass spectrometry (MS) as the analytical platform. Many recent studies have highlighted the capabilities of MS to provide good coverage of the proteome at high sensitivity often using yeast as a demonstrator system (4⇓⇓⇓⇓⇓–10), suggesting that quantitative proteomics has now “come of age” (1). However, given that MS is not inherently quantitative, most of the approaches produce relative quantitation and do not typically measure the absolute concentrations of individual molecular species by direct means. For the yeast proteome, epitope tagging studies using green fluorescent protein or tandem affinity purification tags provides an alternative to MS. Here, collections of modified strains are generated that incorporate a detectable, and therefore quantifiable, tag that supports immunoblotting or fluorescence techniques (11, 12). However, such strategies for copies per cell (cpc) quantification rely on genetic manipulation of the host organism and hence do not quantify endogenous, unmodified protein. Similarly, the tagging can alter protein levels - in some instances hindering protein expression completely (11). Even so, epitope tagging methods have been of value to the community, yielding high coverage quantitative data sets for the majority of the yeast proteome (11, 12). MS-based methods do not rely on such nonendogenous labels, and can reach genome-wide levels of coverage. Accurate estimation of absolute concentrations i.e. protein copy number per cell, also usually necessitates the use of (one or more) external or internal standards from which to derive absolute abundance (4). Examples include a comprehensive quantification of the Leptospira interrogans proteome that used a 19 protein subset quantified using selected reaction monitoring (SRM)1 to calibrate their label-free data (8, 13). It is worth noting that epitope tagging methods, although also absolute, rely on a very limited set of standards for the quantitative western blots and necessitate incorporation of a suitable immunogenic tag (11). Other recent, innovative approaches exploiting total ion signal and internal scaling to estimate protein cellular abundance (10, 14), avoid the use of internal standards, though they do rely on targeted proteomic data to validate their approach. The use of targeted SRM strategies to derive proteomic calibration standards highlights its advantages in comparison to label-free in terms of accuracy, precision, dynamic range and limit of detection and has gained currency for its reliability and sensitivity (3, 15⇓–17). Indeed, SRM is often referred to as the “gold standard proteomic quantification method,” being particularly well-suited when the proteins to be quantified are known, when appropriate surrogate peptides for protein quantification can be selected a priori, and matched with stable isotope-labeled (SIL) standards (18⇓–20). In combination with SIL peptide standards that can be generated through a variety of means (3, 15), SRM can be used to quantify low copy number proteins, reaching down to ∌50 cpc in yeast (5). However, although SRM methodology has been used extensively for S. cerevisiae protein quantification by us and others (19, 21, 22), it has not been used for large protein cohorts because of the requirement to generate the large numbers of attendant SIL peptide standards; the largest published data set is only for a few tens of proteins. It remains a challenge therefore to robustly quantify an entire eukaryotic proteome in absolute terms by direct means using targeted MS and this is the focus of our present study, the Census Of the Proteome of Yeast (CoPY). We present here direct and absolute quantification of nearly 2000 endogenous proteins from S. cerevisiae grown in steady state in a chemostat culture, using the SRM-based QconCAT approach. Although arguably not quantification of the entire proteome, this represents an accurate and rigorous collection of direct yeast protein quantifications, providing a gold-standard data set of endogenous protein levels for future reference and comparative studies. The highly reproducible SIL-SRM MS data, with robust CVs typically less than 20%, is compared with other extant data sets that were obtained via alternative analytical strategies. We also report a matched high quality transcriptome from the same cells using RNA-seq, which supports additional calculations including a refined estimate of the total protein content in yeast cells, and a simple linear model of translation explaining 70% of the variance between RNA and protein levels in yeast chemostat cultures. These analyses confirm the validity of our data and approach, which we believe represents a state-of-the-art absolute quantification compendium of a significant proportion of a model eukaryotic proteome

    cAMP-dependent protein kinase (PKA) complexes probed by complementary differential scanning fluorimetry and ion mobility-mass spectrometry

    Get PDF
    cAMP-dependent protein kinase (PKA) is an archetypal biological signaling module and a model for understanding the regulation of protein kinases. In the present study, we combine biochemistry with differential scanning fluorimetry (DSF) and ion mobility–mass spectrometry (IM–MS) to evaluate effects of phosphorylation and structure on the ligand binding, dynamics and stability of components of heteromeric PKA protein complexes in vitro. We uncover dynamic, conformationally distinct populations of the PKA catalytic subunit with distinct structural stability and susceptibility to the physiological protein inhibitor PKI. Native MS of reconstituted PKA R(2)C(2) holoenzymes reveals variable subunit stoichiometry and holoenzyme ablation by PKI binding. Finally, we find that although a ‘kinase-dead’ PKA catalytic domain cannot bind to ATP in solution, it interacts with several prominent chemical kinase inhibitors. These data demonstrate the combined power of IM–MS and DSF to probe PKA dynamics and regulation, techniques that can be employed to evaluate other protein-ligand complexes, with broad implications for cellular signaling

    Access and utilisation of maternity care for disabled women who experience domestic abuse:a systematic review

    Get PDF
    BACKGROUND: Although disabled women are significantly more likely to experience domestic abuse during pregnancy than non-disabled women, very little is known about how maternity care access and utilisation is affected by the co-existence of disability and domestic abuse. This systematic review of the literature explored how domestic abuse impacts upon disabled women’s access to maternity services. METHODS: Eleven articles were identified through a search of six electronic databases and data were analysed to identify: the factors that facilitate or compromise access to care; the consequences of inadequate care for pregnant women’s health and wellbeing; and the effectiveness of existing strategies for improvement. RESULTS: Findings indicate that a mental health diagnosis, poor relationships with health professionals and environmental barriers can compromise women’s utilisation of maternity services. Domestic abuse can both compromise, and catalyse, access to services and social support is a positive factor when accessing care. Delayed and inadequate care has adverse effects on women’s physical and psychological health, however further research is required to fully explore the nature and extent of these consequences. Only one study identified strategies currently being used to improve access to services for disabled women experiencing abuse. CONCLUSIONS: Based upon the barriers and facilitators identified within the review, we suggest that future strategies for improvement should focus on: understanding women’s reasons for accessing care; fostering positive relationships; being women-centred; promoting environmental accessibility; and improving the strength of the evidence base

    Proteomic analysis of dietary restriction in yeast reveals a role for Hsp26 in lifespan extension

    Get PDF
    Dietary restriction (DR) has been shown to increase lifespan in organisms ranging from yeast to mammals. This suggests that the underlying mechanisms may be evolutionarily conserved. Indeed, upstream signalling pathways, such as TOR, are strongly linked to DR-induced longevity in various organisms. However, the downstream effector proteins that ultimately mediate lifespan extension are less clear. To shed light on this, we used a proteomic approach on budding yeast. Our reasoning was that analysis of proteome-wide changes in response to DR might enable the identification of proteins that mediate its physiological effects, including replicative lifespan extension. Of over 2500 proteins we identified by liquid chromatography-mass spectrometry, 183 were significantly altered in expression by at least 3-fold in response to DR. Most of these proteins were mitochondrial and/or had clear links to respiration and metabolism. Indeed, direct analysis of oxygen consumption confirmed that mitochondrial respiration was increased several-fold in response to DR. In addition, several key proteins involved in mating, including Ste2 and Ste6, were downregulated by DR. Consistent with this, shmoo formation in response to α-factor pheromone was reduced by DR, thus confirming the inhibitory effect of DR on yeast mating. Finally, we found that Hsp26, a member of the conserved small heat shock protein (sHSP) family, was upregulated by DR and that overexpression of Hsp26 extended yeast replicative lifespan. As overexpression of sHSPs in Caenorhabditis elegans and Drosophila has previously been shown to extend lifespan, our data on yeast Hsp26 suggest that sHSPs may be universally conserved effectors of longevity

    Exploring the conformational landscape and stability of Aurora A using ion-mobility mass spectrometry and molecular modelling

    Get PDF
    ABSTRACTProtein kinase inhibitors are proving highly effective in helping treat a number of non-communicable diseases driven by aberrant kinase signaling. They are also extremely valuable as chemical tools to help delineate cellular roles of kinase signaling complexes. The binding of small molecule inhibitors induces conformational effects on kinase dynamics; evaluating the effect of such interactions can assist in developing specific inhibitors and is deemed imperative to understand both inhibition and resistance mechanisms. Using gas-phase ion mobility-mass spectrometry (IM-MS) we characterized changes in the conformational landscape and stability of the protein kinase Aurora A (Aur A) driven by binding of the physiological activator TPX2 or small molecule inhibition. Aided by molecular modeling, we establish three major conformations: one highly-populated compact conformer similar to that observed in most crystal structures, a second highly-populated conformer possessing a more open structure that is infrequently found in crystal structures, and an additional low-abundance conformer not currently represented in the protein databank. Comparison of active (phosphorylated) and inactive (non-phosphorylated) forms of Aur A revealed that the active enzyme has different conformer weightings and is less stable than the inactive enzyme. Notably, inhibitor binding shifts conformer balance towards the more compact configurations adopted by the unbound enzyme, with both IM-MS and modelling revealing inhibitor-mediated stabilisation of active Aur A. These data highlight the power of IM-MS in combination with molecular dynamics simulations to probe and compare protein kinase structural dynamics that arise due to differences in activity and as a result of compound binding.</jats:p

    Quantitative Proteomics of Enriched Esophageal and Gut Tissues from the Human Blood Fluke Schistosoma mansoni Pinpoints Secreted Proteins for Vaccine Development

    Get PDF
    Schistosomes are blood-dwelling helminth parasites that cause schistosomiasis, a debilitating disease resulting in inflammation and, in extreme cases, multiple organ damage. Major challenges to control the transmission persist, and the discovery of protective antigens remains of critical importance for vaccine development. Rhesus macaques can selfcure following schistosome infection, generating antibodies that target proteins from the tegument, gut, and esophagus, the last of which is the least investigated. We developed a dissection technique that permitted increased sensitivity in a comparative proteomics profiling of schistosome esophagus and gut. Proteome analysis of the male schistosome esophagus identified 13 proteins encoded by microexon genes (MEGs), 11 of which were uniquely located in the esophageal glands. Based on this and transcriptome information, a QconCAT was designed for the absolute quantification of selected targets. MEGs 12, 4.2, and 4.1 and venom allergen-like protein 7 were the most abundant, spanning over 245 million to 6 million copies per cell, while aspartyl protease, palmitoyl thioesterase, and galactosyl transferase were present at <1 million copies. Antigenic variation by alternative splicing of MEG proteins was confirmed together with a specialized machinery for protein glycosylation/secretion in the esophagus. Moreover, some gastrodermal secretions were highly enriched in the gut, while others were more uniformly distributed throughout the parasite, potentially indicating lysosomal activity. Collectively, our findings provide a more rational, better-oriented selection of schistosome vaccine candidates in the context of a proven model of protective immunity
    • 

    corecore