1,022 research outputs found

    Ultrafast dynamics of coherences in the quantum Hall system

    Full text link
    Using three-pulse four-wave-mixing optical spectroscopy, we study the ultrafast dynamics of the quantum Hall system. We observe striking differences as compared to an undoped system, where the 2D electron gas is absent. In particular, we observe a large off-resonant signal with strong oscillations. Using a microscopic theory, we show that these are due to many-particle coherences created by interactions between photoexcited carriers and collective excitations of the 2D electron gas. We extract quantitative information about the dephasing and interference of these coherences.Comment: 4 pages, 4 figures, to be published in Phys. Rev. Let

    The charmonium and bottomonium mass spectroscopy with a simple approximaton of the kinetic term

    Get PDF
    In this paper we propose a particular description of meson spectroscopy, with emphasis in heavy bound states like charmonia and bottomonia, after working on the main aspects of the construction of an effective potential model. We use the prerogatives from ``soft QCD'' to determine the effective potential terms, establishing the asymptotic Coulomb term from one gluon exchange approximation. At the same time, a linear confinement term is introduced in agreement with QCD and phenomenological prescription. The main aspect of this work is the simplification in the calculation, consequence of a precise and simplified description of the kinetic term of the Hamiltonian. With this proposition we perform the calculations of mass spectroscopy for charmonium and bottomonium mesons and we discuss the real physical possibilities of developing a generalized potential model, its possible advantages relative to experimental parameterization and complexity in numerical calculations

    Regional cutaneous microvascular flow responses during gravitational and LBNP stresses

    Get PDF
    Due to the regional variability of local hydrostatic pressures, microvascular flow responses to gravitational stress probably vary along the length of the body. Although these differences in local autoregulation have been observed previously during whole-body tilting, they have not been investigated during application of artificial gravitational stresses, such as lower body negative pressure or high gravity centrifugation. Although these stresses can create equivalent G-levels at the feet, they result in distinct distributions of vascular transmural pressure along the length of the body, and should consequently elicit different magnitudes and distributions of microvascular response. In the present study, the effects of whole-body tilting and lower body negative pressure on the level and distribution of microvascular flows within skin along the length of the body were compared

    Simulated Microgravity Increases Cutaneous Blood Flow in the Head and Leg of Humans

    Get PDF
    The cutaneous micro-circulation vasodilates during acute 6 deg. head-down tilt (HDT, simulated microgravity) relative to upright conditions, more in the lower body than in the upper body. We expected that relative magnitudes of and differences between upper and lower body cutaneous blood flow elevation would be sustained during initial acclimation to simulated microgravity. We measured cutaneous micro-vascular blood flow with laser-Doppler flowmetry at the leg (over the distal tibia) and cheek (over the zygomatic arch) of eight healthy men before, during, and after 24 h of HDT. Results were calculated as a percentage of baseline value (100% measured during pre-tilt upright sitting). Cutaneous blood flow in the cheek increased significantly to 165 +/- 37% (mean + SE, p less than 0.05) at 9-12 h HDT, then returned to near baseline values by 24 h HDT (114 +/- 29%, NSD), despite increased local arterial pressure. Microvascular flow in the leg remained significantly elevated above baseline throughout 24 h HDT (427 +/- 85% at 3 h HDT and 215 +/- 142% at 24 h HDT, p less than 0.05). During the 6-h upright sitting recovery period, cheek and leg blood flow levels returned to near pre-tilt baseline values. Because hydrostatic effects of HDT increase local arterial pressure at the carotid sinus, baroreflex-mediated withdrawal of sympathetic tone probably contributed to increased microvascular flows at the head and leg during HDT. In the leg, baroreflex effects combined with minimal stimulation of local veno-arteriolar and myogenic autoregulatory vasoconstriction to elicit relatively larger and more sustained increases in cutaneous flow during HDT. In the cheek, delayed myogenic vasoconstriction and/or humoral effects apparently compensated for flow elevation by 24 h of HDT. Therefore, localized vascular adaptations to gravity probably explain differences in acclimation of lower and upper body blood flow to HDT and actual microgravity

    Final state interaction in kaons decays

    Full text link
    The kaons decays to the pairs of charged and neutral pions are considered in the framework of the non-relativistic quantum mechanics. The general expressions for the decay amplitudes to the two different channels accounting for the strong interaction between pions are obtained. The developed approach allows one to estimate the contribution of terms of any order in strong interaction and correctly takes into account the electromagnetic interaction between the pions in the final state.Comment: 8 page

    Dynamical Evolution of Boson Stars II: Excited States and Self-Interacting Fields

    Full text link
    The dynamical evolution of self-gravitating scalar field configurations in numerical relativity is studied. The previous analysis on ground state boson stars of non-interacting fields is extended to excited states and to fields with self couplings. Self couplings can significantly change the physical dimensions of boson stars, making them much more astrophysically interesting (e.g., having mass of order 0.1 solar mass). The stable (SS) and unstable (UU) branches of equilibrium configurations of boson stars of self-interacting fields are studied; their behavior under perturbations and their quasi-normal oscillation frequencies are determined and compared to the non-interacting case. Excited states of boson stars with and without self-couplings are studied and compared. Excited states also have equilibrium configurations with SS and UU branch structures; both branches are intrinsically unstable under a generic perturbation but have very different instability time scales. We carried out a detailed study of the instability time scales of these configurations. It is found that highly excited states spontaneously decay through a cascade of intermediate states similar to atomic transitions.Comment: 16 pages+ 13 figures . All figures are available at http://wugrav.wustl.edu/Paper

    Correlated many-body treatment of Breit interaction with application to cesium atomic properties and parity violation

    Get PDF
    Corrections from Breit interaction to basic properties of atomic 133Cs are determined in the framework of third-order relativistic many-body perturbation theory. The corrections to energies, hyperfine-structure constants, off-diagonal hyperfine 6S-7S amplitude, and electric-dipole matrix elements are tabulated. It is demonstrated that the Breit corrections to correlations are comparable to the Breit corrections at the Dirac-Hartree-Fock level. Modification of the parity-nonconserving (PNC) 6S-7S amplitude due to Breit interaction is also evaluated; the resulting weak charge of 133^{133}Cs shows no significant deviation from the prediction of the standard model of elementary particles. The neutron skin correction to the PNC amplitude is also estimated to be -0.2% with an error bound of 30% based on the analysis of recent experiments with antiprotonic atoms. The present work supplements publication [A. Derevianko, Phys. Rev. Lett. 85, 1618 (2000)] with a discussion of the formalism and provides additional numerical results and updated discussion of parity violation.Comment: 16 pages; 5 figs; submitted to Phys. Rev.

    The uORF-containing thrombopoietin mRNA escapes nonsense-mediated decay (NMD)

    Get PDF
    Platelet production is induced by the cytokine thrombopoietin (TPO). It is physiologically critical that TPO expression is tightly regulated, because lack of TPO causes life-threatening thrombocytopenia while an excess of TPO results in thrombocytosis. The plasma concentration of TPO is controlled by a negative feedback loop involving receptor-mediated uptake of TPO by platelets. Furthermore, TPO biosynthesis is limited by upstream open reading frames (uORFs) that curtail the translation of the TPO mRNA. uORFs are suggested to activate RNA degradation by nonsense-mediated decay (NMD) in a number of physiological transcripts. Here, we determine whether NMD affects TPO expression. We show that reporter mRNAs bearing the seventh TPO uORF escape NMD. Importantly, endogenously expressed TPO mRNA from HuH7 cells is unaffected by abrogation of NMD by RNAi. Thus, regulation of TPO expression is independent of NMD, implying that mRNAs bearing uORFs cannot generally be considered to represent NMD targets

    Stationary Solutions of Liouville Equations for Non-Hamiltonian Systems

    Full text link
    We consider the class of non-Hamiltonian and dissipative statistical systems with distributions that are determined by the Hamiltonian. The distributions are derived analytically as stationary solutions of the Liouville equation for non-Hamiltonian systems. The class of non-Hamiltonian systems can be described by a non-holonomic (non-integrable) constraint: the velocity of the elementary phase volume change is directly proportional to the power of non-potential forces. The coefficient of this proportionality is determined by Hamiltonian. The constant temperature systems, canonical-dissipative systems, and Fermi-Bose classical systems are the special cases of this class of non-Hamiltonian systems.Comment: 22 page

    Evaluation of the self-energy correction to the g-factor of S states in H-like ions

    Full text link
    A detailed description of the numerical procedure is presented for the evaluation of the one-loop self-energy correction to the gg-factor of an electron in the 1s1s and 2s2s states in H-like ions to all orders in ZαZ\alpha.Comment: Final version, December 30, 200
    • 

    corecore