33 research outputs found

    A simple model for the interaction of planetary and synoptic-scale waves in the troposphere

    Get PDF
    The time-mean circulation of the troposphere during the Northern hemisphere winter is dominated by planetary-scale stationary waves superposed on longitudinal-mean westerly flow. The movement and generation of weather-making, synoptic-scale transient waves are controlled by this large-scale circulation. The interannual variablity of planetary scale waves determines the severity of the winter season over broad geographic regions through such factors as frequency of storms, precipitation and temperature. A conceptual model that incorporates these feedbacks between the two scales is developed and guides the formulation of the quantitative low-order model which retains a few basic physical processes and wave components. In the low-order model the fluxes of sensible heat and momentum and latent heat release by transient eddies are parameterized in terms of the evolving large-scale circulation. Radiative forcing and damping, planetary-scale variations in moisture and topography and Ekman dissipation are also included. Testing of this model is in progress. The results will help interpret experiments from sophisticated general-circulation models and ascertain the need for satellite observations of precipitation

    Triptych for an ideal museum: Hollein Beuys and Cladders

    Get PDF

    The effect of latent heat release on synoptic-to-planetary wave interactions and its implication for satellite observations: Theoretical modeling

    Get PDF
    Simple models are being developed to simulate interaction of planetary and synoptic-scale waves incorporating the effects of large-scale topography; eddy heat and momentum fluxes (or nonlinear dynamics); radiative heating/cooling; and latent heat release (precipitation) in synoptic-scale waves. The importance of latent heat release is determined in oceanic storm tracks for temporal variability and time-mean behavior of planetary waves. The model results were compared with available observations of planetary and synoptic-scale wave variability and time-mean circulation. The usefulness of monitoring precipitation in oceanic storm tracks by satellite observing systems was ascertained. The modeling effort includes two different low-order quasi-geostrophic models-time-dependent version and climatological mean version. The modeling also includes a low-order primitive equation model. A time-dependent, multi-level version will be used to validate the two-level Q-G models and examine effects of spherical geometry

    The Architecture Pill

    Get PDF

    The impact of greenhouse climate change on the energetics and hydrologic processes of mid-latitude transient eddies

    Get PDF
    Atmospheric transient eddies contribute significantly to mid-latitude energy and water vapor transports. Changes in the global climate, as induced by greenhouse enhancement, will likely alter transient eddy behavior. Unraveling all the feedbacks that occur in general circulation models (GCMs) can be difficult. The transient eddies are isolated from the feedbacks and are focused on the response of the eddies to zonal-mean climate changes that result from CO2-doubling. Using a primitive-equation spectral model, the impact of climate change on the life cycles of transient eddies is examined. Transient eddy behavior in experiments is compared with initial conditions that are given by the zonal-mean climates of the GCMs with current and doubled amounts of CO2. The smaller meridional temperature gradient in a doubled CO2 climate leads to a reduction in eddy kinetic energy, especially in the subtropics. The decrease in subtropical eddy energy is related to a substantial reduction in equatorward flux of eddy activity during the latter part of the life cycle. The reduction in equatorward energy flux alters the moisture cycle. Eddy meridional transport of water vapor is shifted slightly poleward and subtropical precipitation is reduced. The water vapor transport exhibits a relatively small change in magnitude, compared to changes in eddy energy, due to the compensating effect of higher specific humidity in the doubled-CO2 climate. An increase in high-latitude precipitation is related to the poleward shift in eddy water vapor flux. Surface evaporation amplifies climatic changes in water vapor transport and precipitation in the experiments

    The effect of latent heat release on synoptic-to-planetary wave interactions and its implication for satellite observations: Theoretical modeling

    Get PDF
    The project objectives are to develop process models to investigate the interaction of planetary and synoptic-scale waves including the effects of latent heat release (precipitation), nonlinear dynamics, physical and boundary-layer processes, and large-scale topography; to determine the importance of latent heat release for temporal variability and time-mean behavior of planetary and synoptic-scale waves; to compare the model results with available observations of planetary and synoptic wave variability; and to assess the implications of the results for monitoring precipitation in oceanic-storm tracks by satellite observing systems. Researchers have utilized two different models for this project: a two-level quasi-geostrophic model to study intraseasonal variability, anomalous circulations and the seasonal cycle, and a 10-level, multi-wave primitive equation model to validate the two-level Q-G model and examine effects of convection, surface processes, and spherical geometry. It explicitly resolves several planetary and synoptic waves and includes specific humidity (as a predicted variable), moist convection, and large-scale precipitation. In the past year researchers have concentrated on experiments with the multi-level primitive equation model. The dynamical part of that model is similar to the spectral model used by the National Meteorological Center for medium-range forecasts. The model includes parameterizations of large-scale condensation and moist convection. To test the validity of results regarding the influence of convective precipitation, researchers can use either one of two different convective schemes in the model, a Kuo convective scheme or a modified Arakawa-Schubert scheme which includes downdrafts. By choosing one or the other scheme, they can evaluate the impact of the convective parameterization on the circulation. In the past year researchers performed a variety of initial-value experiments with the primitive-equation model. Using initial conditions typical of climatological winter conditions, they examined the behavior of synoptic and planetary waves growing in moist and dry environments. Surface conditions were representative of a zonally averaged ocean. They found that moist convection associated with baroclinic wave development was confined to the subtropics

    Seven Key Principles of Program and Project Success: A Best Practices Survey

    Get PDF
    The National Aeronautics and Space Administration (NASA) Organization Design Team (ODT), consisting of 20 seasoned program and project managers and systems engineers from a broad spectrum of the aerospace industry, academia, and government, was formed to support the Next Generation Launch Technology (NGLT) Program and the Constellation Systems Program. The purpose of the ODT was to investigate organizational factors that can lead to success or failure of complex government programs, and to identify tools and methods for the design, modeling, and analysis of new and more-efficient program and project organizations. The ODT conducted a series of workshops featuring invited lectures from seasoned program and project managers representing 25 significant technical programs spanning 50 years of experience. The result was the identification of seven key principles of program success that can be used to help design and operate future program organizations. This paper presents the success principles and examples of best practices that can significantly improve the design of program, project, and performing technical line organizations, the assessment of workforce needs and organization performance, and the execution of programs and projects
    corecore