32 research outputs found

    Four-photon scattering in birefringent fibers

    Full text link
    Four-photon scattering in nonlinear waveguides is an important physical process that allows photon-pair generation in well defined guided modes, with high rate and reasonably low noise. Most of the experiments to date used the scalar four-photon scattering process in which the pump photons and the scattered photons have the same polarization. In birefringent waveguides, vectorial four-photon scattering is also allowed: these vectorial scattering processes involve photons with different polarizations. In this article, the theory of four-photon scattering in nonlinear, birefringent, and dispersive fibers is developed in the framework of the quantum theory of light. The work focusses on the spectral properties and quantum correlations (including entanglement) of photon-pairs generated in high-birefringence and low-birefringence fibers.Comment: 12 pages, 5 figures, submitted to Phys. Rev.

    Vector modulation instability induced by vacuum fluctuations in highly birefringent fibers in the anomalous dispersion regime

    Full text link
    We report a detailed experimental study of vector modulation instability in highly birefringent optical fibers in the anomalous dispersion regime. We prove that the observed instability is mainly induced by vacuum fluctuations. The detuning of the spectral peaks agrees with linear perturbation analysis. The exact shape of the spectrum is well reproduced by numerical integration of stochastic nonlinear Schrodinger equations describing quantum propagation.Comment: 11 pages, 4 figures, to be published in Optics Letter

    Experimental quantum key distribution over highly noisy channels

    Full text link
    Error filtration is a method for encoding the quantum state of a single particle into a higher dimensional Hilbert space in such a way that it becomes less sensitive to phase noise. We experimentally demonstrate this method by distributing a secret key over an optical fiber whose noise level otherwise precludes secure quantum key distribution. By filtering out the phase noise, a bit error rate of 15.3% +/- 0.1%, which is beyond the security limit, can be reduced to 10.6% +/- 0.1%, thereby guaranteeing the cryptographic security.Comment: 4 pages, 2 figure

    Provably Secure Experimental Quantum Bit-String Generation

    Full text link
    Coin tossing is a cryptographic task in which two parties who do not trust each other aim to generate a common random bit. Using classical communication this is impossible, but non trivial coin tossing is possible using quantum communication. Here we consider the case when the parties do not want to toss a single coin, but many. This is called bit string generation. We report the experimental generation of strings of coins which are provably more random than achievable using classical communication. The experiment is based on the ``plug and play'' scheme developed for quantum cryptography, and therefore well suited for long distance quantum communication.Comment: 4 pages, 3 figures. Submitted to Phys. Rev. Lett. A complete security analysis for the experiment is given in quant-ph/040812

    Coherent imaging of extended objects

    Full text link
    When used with coherent light, optical imaging systems, even diffraction-limited, are inherently unable to reproduce both the amplitude and the phase of a two-dimensional field distribution because their impulse response function varies slowly from point to point (a property known as non-isoplanatism). For sufficiently small objects, this usually results in a phase distortion and has no impact on the measured intensity. Here, we show that the intensity distribution can also be dramatically distorted when objects of large extension or of special shapes are imaged. We illustrate the problem using two simple examples: the pinhole camera and the aberration-free thin lens. The effects predicted by our theorical analysis are also confirmed by experimental observations.Comment: 10 pages, 9 figures, submitted to Optics Communication

    Scalar and vector modulation instabilities induced by vacuum fluctuations in fibers: numerical study

    Full text link
    We study scalar and vector modulation instabilities induced by the vacuum fluctuations in birefringent optical fibers. To this end, stochastic coupled nonlinear Schrodinger equations are derived. The stochastic model is equivalent to the quantum field operators equations and allow for dispersion, nonlinearity, and arbitrary level of birefringence. Numerical integration of the stochastic equations is compared to analytical formulas in the case of scalar modulation instability and non depleted pump approximation. The effect of classical noise and its competition with vacuum fluctuations for inducing modulation instability is also addressed.Comment: 33 pages, 5 figure

    Spatial Light Modulators for the Manipulation of Individual Atoms

    Full text link
    We propose a novel dipole trapping scheme using spatial light modulators (SLM) for the manipulation of individual atoms. The scheme uses a high numerical aperture microscope to map the intensity distribution of a SLM onto a cloud of cold atoms. The regions of high intensity act as optical dipole force traps. With a SLM fast enough to modify the trapping potential in real time, this technique is well suited for the controlled addressing and manipulation of arbitrarily selected atoms.Comment: 9 pages, 5 figure

    Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip

    Get PDF
    Nonlinear optical processes are one of the most important tools in modern optics with a broad spectrum of applications in, for example, frequency conversion, spectroscopy, signal processing and quantum optics. For practical and ultimately widespread implementation, on-chip devices compatible with electronic integrated circuit technology offer great advantages in terms of low cost, small footprint, high performance and low energy consumption. While many on-chip key components have been realized, to date polarization has not been fully exploited as a degree of freedom for integrated nonlinear devices. In particular, frequency conversion based on orthogonally polarized beams has not yet been demonstrated on chip. Here we show frequency mixing between orthogonal polarization modes in a compact integrated microring resonator and demonstrate a bi-chromatically pumped optical parametric oscillator. Operating the device above and below threshold, we directly generate orthogonally polarized beams, as well as photon pairs, respectively, that can find applications, for example, in optical communication and quantum optics
    corecore