241 research outputs found

    Photoconductance of a one-dimensional quantum dot

    Full text link
    The ac-transport properties of a one-dimensional quantum dot with non-Fermi liquid correlations are investigated. It is found that the linear photoconductance is drastically influenced by the interaction. Temperature and voltage dependences of the sideband peaks are treated in detail. Characteristic Luttinger liquid power laws are founded.Comment: accepted in European Physical Journal

    Majorana bound states in hybrid 2D Josephson junctions with ferromagnetic insulators

    Full text link
    We consider a Josephson junction consisting of superconductor/ferromagnetic insulator (S/FI) bilayers as electrodes which proximizes a nearby 2D electron gas. By starting from a generic Josephson hybrid planar setup we present an exhaustive analysis of the the interplay between the superconducting and magnetic proximity effects and the conditions under which the structure undergoes transitions to a non-trivial topological phase. We address the 2D bound state problem using a general transfer matrix approach that reduces the problem to an effective 1D Hamiltonian. This allows for straightforward study of topological properties in different symmetry classes. As an example we consider a narrow channel coupled with multiple ferromagnetic superconducting fingers, and discuss how the Majorana bound states can be spatially controlled by tuning the superconducting phases. Following our approach we also show the energy spectrum, the free energy and finally the multiterminal Josephson current of the setup.Comment: 8 pages; 5 figure

    Analogue Casimir Radiation using an Optical Para- metric Oscillator

    Full text link
    We establish an explicit analogy between the dynamical Casimir effect and the photon emission of a thin non-linear crystal pumped inside a cavity. This allows us to propose a system based on a type-I optical parametric oscillator (OPO) to simulate a cavity oscillating in vacuum at optical frequencies. The resulting photon flux is expected to be more easily detectable than with a mechanical excitation of the mirrors. We conclude by comparing different theoretical predictions and suggest that our experimental proposal could help discriminate between them.Comment: 7 pages, 2 figures, epl2 stylefile necessary to compil

    A novel experimental approach for the detection of the dynamic Casimir effect

    Full text link
    The Casimir effect is a well-known macroscopic consequence of quantum vacuum fluctuations, but whereas the static effect (Casimir force) has long been observed experimentally, the dynamic Casimir effect is up to now undetected. From an experimental viewpoint a possible detection would imply the vibration of a mirror at gigahertz frequencies. Mechanical motions at such frequencies turn out to be technically unfeasible. Here we present a different experimental scheme where mechanical motions are avoided, and the results of laboratory tests showing that the scheme is practically feasible. We think that at present this approach gives the only possibility of detecting this phenomenon.Comment: Submitted to the Physical Review Letters. RevTeX. 4 pages, 2 figure

    The influence of charge detection on counting statistics

    Full text link
    We consider the counting statistics of electron transport through a double quantum dot with special emphasis on the dephasing induced by a nearby charge detector. The double dot is embedded in a dissipative enviroment, and the presence of electrons on the double dot is detected with a nearby quantum point contact. Charge transport through the double dot is governed by a non-Markovian generalized master equation. We describe how the cumulants of the current can be obtained for such problems, and investigate the difference between the dephasing mechanisms induced by the quantum point contact and the coupling to the external heat bath. Finally, we consider various open questions of relevance to future research.Comment: 15 pages, 2 figures, Contribution to 5-th International Conference on Unsolved Problems on Noise, Lyon, France, June 2-6, 200

    Magneto Seebeck effect in REFeAsO (RE=rare earth) compounds: probing the magnon drag scenario

    Get PDF
    We investigate Seebeck effect in REFeAsO (RE=rare earth)compounds as a function of temperature and magnetic field up to 30T. The Seebeck curves are characterized by a broad negative bump around 50K, which is sample dependent and strongly enhanced by the application of a magnetic field. A model for the temperature and field dependence of the magnon drag contribution to the Seebeck effect by antiferromagnetic (AFM) spin fluctuation is developed. It accounts for the magnitude and scaling properties of such bump feature in our experimental data. This analysis allows to extract precious information on the coupling between electrons and AFM spin fluctuations in these parent compound systems, with implications on the pairing mechanism of the related superconducting compounds

    Spin effects in transport through non-Fermi liquid quantum dots

    Full text link
    The current-voltage characteristic of a one dimensional quantum dot connected via tunnel barriers to interacting leads is calculated in the region of sequential tunneling. The spin of the electrons is taken into account. Non-Fermi liquid correlations implying spin-charge separation are assumed to be present in the dot and in the leads. It is found that the energetic distance of the peaks in the linear conductance shows a spin-induced parity effect at zero temperature T. The temperature dependence of the positions of the peaks depends on the non-Fermi liquid nature of the system. For non-symmetric tunnel barriers negative differential conductances are predicted, which are related to the participation in the transport of collective states in the quantum dot with larger spins. Without spin-charge separation the negative differential conductances do not occur. Taking into account spin relaxation destroys the spin-induced conductance features. The possibility of observing in experiment the predicted effects are briefly discussed.Comment: 15 pages, 16 figures, accepted for publication on Physical Review

    Shot noise of a quantum dot with non-Fermi liquid correlations

    Full text link
    The shot noise of a one-dimensional wire interrupted by two barriers shows interesting features related to the interplay between Coulomb blockade effects, Luttinger correlations and discrete excitations. At small bias the Fano factor reaches the lowest attainable value, 1/2, irrespective of the ratio of the two junction resistances. At larger voltages this asymmetry is power-law renormalized by the interaction strength. We discuss how the measurement of current and these features of the noise allow to extract the Luttinger liquid parameter.Comment: 4 pages, 3 figures,to be published in Phys. Rev. B. For high resolution image of Fig.1 see http://server1.fisica.unige.it/~braggio/doc.ht
    • …
    corecore