71 research outputs found

    A retrospective population based trend analysis on hospital admissions for lower respiratory illness among Swedish children from 1987 to 2000

    Get PDF
    BACKGROUND: Data relating to hospital admissions of very young children for wheezing illness have been conflicting. Our primary aim was to assess whether a previous increase in hospital admissions for lower respiratory illness had continued in young Swedish children. We have included re-admissions in our analyses in order to evaluate the burden of lower respiratory illness in very young children. We have also assessed whether changes in the labelling of symptoms have affected the time trend. METHODS: A retrospective, population based study was conducted to assess the time trend in admissions and re-admissions for lower respiratory illness. Data were obtained from the Swedish Hospital Discharge Register for all children with a first hospital admission before nine years of age, a total of 109,176 children. The register covers more than 98% of all hospital admissions in Sweden. The coding of diagnoses was based on ICD-9 from 1987 to 1996 and ICD-10 from 1997. RESULTS: The first admission rates declined significantly in children with a first admission after two years of age. However, an increasing admission trend was observed in children aged less than one year and 35% of first admissions occurred in this age group. The annual increase was 3.8% (95% CI 1.3–6.3) in boys and 5.0% (95% CI 2.4–7.6) in girls. A diagnostic shift appeared to occur when ICD-10 was introduced in 1997. The asthma and pneumonia admission rate in children aged less than one year levelled off, whereas the increase in admissions for bronchitis continued. The re-admission rates for asthma decreased and the probability of re-admission was higher in boys. National drug statistics demonstrated a substantial increase in the delivery of inhaled steroids to all age groups but most prescriptions occurred to children aged one year or more. CONCLUSION: Hospital admissions for lower respiratory illness are still increasing in children aged <1 year. Our findings are in line with other recent studies suggesting a change in the responsiveness to viral infections in very young children, but changes in admission criteria cannot be excluded. An increased use of inhaled steroids may have contributed to decreasing re-admission rates

    Individual-level socioeconomic status is associated with worse asthma morbidity in patients with asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Low socioeconomic status (SES) has been linked to higher morbidity in patients with chronic diseases, but may be particularly relevant to asthma, as asthmatics of lower SES may have higher exposures to indoor (e.g., cockroaches, tobacco smoke) and outdoor (e.g., urban pollution) allergens, thus increasing risk for exacerbations.</p> <p>Methods</p> <p>This study assessed associations between adult SES (measured according to educational level) and asthma morbidity, including asthma control; asthma-related emergency health service use; asthma self-efficacy, and asthma-related quality of life, in a Canadian cohort of 781 adult asthmatics. All patients underwent a sociodemographic and medical history interview and pulmonary function testing on the day of their asthma clinic visit, and completed a battery of questionnaires (Asthma Control Questionnaire, Asthma Quality of Life Questionnaire, and Asthma Self-Efficacy Scale). General Linear Models assessed associations between SES and each morbidity measure.</p> <p>Results</p> <p>Lower SES was associated with worse asthma control (F = 11.63, p < .001), greater emergency health service use (F = 5.09, p = .024), and worse asthma self-efficacy (F = 12.04, p < .01), independent of covariates. Logistic regression analyses revealed that patients with <12 years of education were 55% more likely to report an asthma-related emergency health service visit in the last year (OR = 1.55, 95%CI = 1.05-2.27). Lower SES was not related to worse asthma-related quality of life.</p> <p>Conclusions</p> <p>Results suggest that lower SES (measured according to education level), is associated with several indices of worse asthma morbidity, particularly worse asthma control, in adult asthmatics independent of disease severity. Results are consistent with previous studies linking lower SES to worse asthma in children, and add asthma to the list of chronic diseases affected by individual-level SES.</p

    A three-generation study on the association of tobacco smoking with asthma

    Get PDF
    Background: Mothers' smoking during pregnancy increases asthma risk in their offspring. There is some evidence that grandmothers' smoking may have a similar effect, and biological plausibility that fathers' smoking during adolescence may influence offspring's health through transmittable epigenetic changes in sperm precursor cells. We evaluated the three-generation associations of tobacco smoking with asthma. Methods: Between 2010 and 2013, at the European Community Respiratory Health Survey III clinical interview, 2233 mothers and 1964 fathers from 26 centres reported whether their offspring (aged <= 51 years) had ever had asthma and whether it had coexisted with nasal allergies or not. Mothers and fathers also provided information on their parents' (grandparents) and their own asthma, education and smoking history. Multilevel mediation models within a multicentre three-generation framework were fitted separately within the maternal (4666 offspring) and paternal (4192 offspring) lines. Results: Fathers' smoking before they were 15 [relative risk ratio (RRR) = 1.43, 95% confidence interval (CI): 1.01-2.01] and mothers' smoking during pregnancy (RRR = 1.27, 95% CI: 1.01-1.59) were associated with asthma without nasal allergies in their offspring. Grandmothers' smoking during pregnancy was associated with asthma in their daughters [odds ratio (OR) = 1.55, 95% CI: 1.17-2.06] and with asthma with nasal allergies in their grandchildren within the maternal line (RRR = 1.25, 95% CI: 1.02-1.55). Conclusions: Fathers' smoking during early adolescence and grandmothers' and mothers' smoking during pregnancy may independently increase asthma risk in offspring. Thus, risk factors for asthma should be sought in both parents and before conception

    Poverty, dirt, infections and non-atopic wheezing in children from a Brazilian urban center

    Get PDF
    BACKGROUND: The causation of asthma is poorly understood. Risk factors for atopic and non-atopic asthma may be different. This study aimed to analyze the associations between markers of poverty, dirt and infections and wheezing in atopic and non-atopic children. METHODS: 1445 children were recruited from a population-based cohort in Salvador, Brazil. Wheezing was assessed using the ISAAC questionnaire and atopy defined as allergen-specific IgE ≥ 0.70 kU/L. Relevant social factors, environmental exposures and serological markers for childhood infections were investigated as risk factors using multivariate multinomial logistic regression. RESULTS: Common risk factors for wheezing in atopic and non-atopic children, respectively, were parental asthma and respiratory infection in early childhood. No other factor was associated with wheezing in atopic children. Factors associated with wheezing in non-atopics were low maternal educational level (OR 1.49, 95% CI 0.98-2.38), low frequency of room cleaning (OR 2.49, 95% CI 1.27-4.90), presence of rodents in the house (OR 1.48, 95% CI 1.06-2.09), and day care attendance (OR 1.52, 95% CI 1.01-2.29). CONCLUSIONS: Non-atopic wheezing was associated with risk factors indicative of poverty, dirt and infections. Further research is required to more precisely define the mediating exposures and the mechanisms by which they may cause non-atopic wheeze

    Immune cell counts and risks of respiratory infections among infants exposed pre- and postnatally to organochlorine compounds: a prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early-life chemical exposure may influence immune system development, subsequently affecting child health. We investigated immunomodulatory potentials of polychlorinated biphenyls (PCBs) and <it>p,p'</it>-DDE in infants.</p> <p>Methods</p> <p>Prenatal exposure to PCBs and <it>p,p'</it>-DDE was estimated from maternal serum concentrations during pregnancy. Postnatal exposure was calculated from concentrations of the compounds in mother's milk, total number of nursing days, and percentage of full nursing each week during the 3 month nursing period. Number and types of infections among infants were registered by the mothers (N = 190). White blood cell counts (N = 86) and lymphocyte subsets (N = 52) were analyzed in a subgroup of infants at 3 months of age.</p> <p>Results</p> <p>Infants with the highest prenatal exposure to PCB congeners CB-28, CB-52 and CB-101 had an increased risk of respiratory infection during the study period. In contrast, the infection odds ratios (ORs) were highest among infants with the lowest prenatal mono-<it>ortho </it>PCB (CB-105, CB-118, CB-156, CB-167) and di-<it>ortho </it>PCB (CB-138, CB-153, CB-180) exposure, and postnatal mono- and di-<it>ortho </it>PCB, and <it>p,p'</it>-DDE exposure. Similar results were found for pre- and postnatal CB-153 exposure, a good marker for total PCB exposure. Altogether, a negative relationship was indicated between infections and total organochlorine compound exposure during the whole pre- and postnatal period. Prenatal exposure to CB-28, CB-52 and CB-101 was positively associated with numbers of lymphocytes and monocytes in infants 3 months after delivery. Prenatal exposure to <it>p,p'</it>-DDE was negatively associated with the percentage of eosinophils. No significant associations were found between PCB and <it>p,p'</it>-DDE exposure and numbers/percentages of lymphocyte subsets, after adjustment for potential confounders.</p> <p>Conclusion</p> <p>This hypothesis generating study suggests that background exposure to PCBs and <it>p,p'</it>-DDE early in life modulate immune system development. Strong correlations between mono- and di-<it>ortho </it>PCBs, and <it>p,p'</it>-DDE exposures make it difficult to identify the most important contributor to the suggested immunomodulation, and to separate effects due to pre- and postnatal exposure. The suggested PCB and <it>p,p'</it>-DDE modulation of infection risks may have consequences for the health development during childhood, since respiratory infections early in life may be risk factors for asthma and middle ear infections.</p

    Parental and household smoking and the increased risk of bronchitis, bronchiolitis and other lower respiratory infections in infancy: systematic review and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Passive smoke exposure increases the risk of lower respiratory infection (LRI) in infants, but the extensive literature on this association has not been systematically reviewed for nearly ten years. The aim of this paper is to provide an updated systematic review and meta-analysis of studies of the association between passive smoking and LRI, and with diagnostic subcategories including bronchiolitis, in infants aged two years and under.</p> <p>Methods</p> <p>We searched MEDLINE and EMBASE (to November 2010), reference lists from publications and abstracts from major conference proceedings to identify all relevant publications. Random effect pooled odds ratios (OR) with 95% confidence intervals (CI) were estimated.</p> <p>Results</p> <p>We identified 60 studies suitable for inclusion in the meta-analysis. Smoking by either parent or other household members significantly increased the risk of LRI; odds ratios (OR) were 1.22 (95% CI 1.10 to 1.35) for paternal smoking, 1.62 (95% CI 1.38 to 1.89) if both parents smoked, and 1.54 (95% CI 1.40 to 1.69) for any household member smoking. Pre-natal maternal smoking (OR 1.24, 95% CI 1.11 to 1.38) had a weaker effect than post-natal smoking (OR 1.58, 95% CI 1.45 to 1.73). The strongest effect was on bronchiolitis, where the risk of any household smoking was increased by an OR of 2.51 (95% CI 1.96 to 3.21).</p> <p>Conclusions</p> <p>Passive smoking in the family home is a major influence on the risk of LRI in infants, and especially on bronchiolitis. Risk is particularly strong in relation to post-natal maternal smoking. Strategies to prevent passive smoke exposure in young children are an urgent public and child health priority.</p

    The asthma epidemic and our artificial habitats

    Get PDF
    BACKGROUND: The recent increase in childhood asthma has been a puzzling one. Recent views focus on the role of infection in the education of the immune system of young children. However, this so called hygiene hypothesis fails to answer some important questions about the current trends in asthma or to account for environmental influences that bear little relation to infection. DISCUSSION: The multi-factorial nature of asthma, reflecting the different ways we tend to interact with our environment, mandates that we look at the asthma epidemic from a broader perspective. Seemingly modern affluent lifestyles are placing us increasingly in static, artificial, microenvironments very different from the conditions prevailed for most part of our evolution and shaped our organisms. Changes that occurred during the second half of the 20th century in industrialized nations with the spread of central heating/conditioning, building insulation, hygiene, TV/PC/games, manufactured food, indoor entertainment, cars, medical care, and sedentary lifestyles all seem to be depriving our children from the essential inputs needed to develop normal airway function (resistance). Asthma according to this view is a manifestation of our respiratory maladaptation to modern lifestyles, or in other words to our increasingly artificial habitats. The basis of the artificial habitat notion may lie in reduced exposure of innate immunity to a variety of environmental stimuli, infectious and non-infectious, leading to reduced formulation of regulatory cells/cytokines as well as inscribed regulatory pathways. This could contribute to a faulty checking mechanism of non-functional Th2 (and likely Th1) responses, resulting in asthma and other immuno-dysregulation disorders. SUMMARY: In this piece I discuss the artificial habitat concept, its correspondence with epidemiological data of asthma and allergy, and provide possible immunological underpinning for it from an evolutionary perspective of health and disease

    Mouse models to unravel the role of inhaled pollutants on allergic sensitization and airway inflammation

    Get PDF
    Air pollutant exposure has been linked to a rise in wheezing illnesses. Clinical data highlight that exposure to mainstream tobacco smoke (MS) and environmental tobacco smoke (ETS) as well as exposure to diesel exhaust particles (DEP) could promote allergic sensitization or aggravate symptoms of asthma, suggesting a role for these inhaled pollutants in the pathogenesis of asthma. Mouse models are a valuable tool to study the potential effects of these pollutants in the pathogenesis of asthma, with the opportunity to investigate their impact during processes leading to sensitization, acute inflammation and chronic disease. Mice allow us to perform mechanistic studies and to evaluate the importance of specific cell types in asthma pathogenesis. In this review, the major clinical effects of tobacco smoke and diesel exhaust exposure regarding to asthma development and progression are described. Clinical data are compared with findings from murine models of asthma and inhalable pollutant exposure. Moreover, the potential mechanisms by which both pollutants could aggravate asthma are discussed

    Can environment or allergy explain international variation in prevalence of wheeze in childhood?

    Get PDF
    Asthma prevalence in children varies substantially around the world, but the contribution of known risk factors to this international variation is uncertain. The International Study of Asthma and Allergies in Childhood (ISAAC) Phase Two studied 8–12 year old children in 30 centres worldwide with parent-completed symptom and risk factor questionnaires and aeroallergen skin prick testing. We used multilevel logistic regression modelling to investigate the effect of adjustment for individual and ecological risk factors on the between-centre variation in prevalence of recent wheeze. Adjustment for single individual-level risk factors changed the centre-level variation from a reduction of up to 8.4% (and 8.5% for atopy) to an increase of up to 6.8%. Modelling the 11 most influential environmental factors among all children simultaneously, the centre-level variation changed little overall (2.4% increase). Modelling only factors that decreased the variance, the 6 most influential factors (synthetic and feather quilt, mother’s smoking, heating stoves, dampness and foam pillows) in combination resulted in a 21% reduction in variance. Ecological (centre-level) risk factors generally explained higher proportions of the variation than did individual risk factors. Single environmental factors and aeroallergen sensitisation measured at the individual (child) level did not explain much of the between-centre variation in wheeze prevalence
    corecore