62 research outputs found

    On the integral cohomology of smooth toric varieties

    Full text link
    Let XÎŁX_\Sigma be a smooth, not necessarily compact toric variety. We show that a certain complex, defined in terms of the fan ÎŁ\Sigma, computes the integral cohomology of XÎŁX_\Sigma, including the module structure over the homology of the torus. In some cases we can also give the product. As a corollary we obtain that the cycle map from Chow groups to integral Borel-Moore homology is split injective for smooth toric varieties. Another result is that the differential algebra of singular cochains on the Borel construction of XÎŁX_\Sigma is formal.Comment: 10 page

    Moduli Stacks of Vector Bundles and Frobenius Morphisms

    Full text link
    We describe the action of the different Frobenius morphisms on the cohomology ring of the moduli stack of algebraic vector bundles of fixed rank and determinant on an algebraic curve over a finite field in characteristic p and analyse special situations like vector bundles on the projective line and relations with infinite Grassmannians.Comment: 19 page

    SentiCircles for contextual and conceptual semantic sentiment analysis of Twitter

    Get PDF
    Lexicon-based approaches to Twitter sentiment analysis are gaining much popularity due to their simplicity, domain independence, and relatively good performance. These approaches rely on sentiment lexicons, where a collection of words are marked with fixed sentiment polarities. However, words’ sentiment orientation (positive, neural, negative) and/or sentiment strengths could change depending on context and targeted entities. In this paper we present SentiCircle; a novel lexicon-based approach that takes into account the contextual and conceptual semantics of words when calculating their sentiment orientation and strength in Twitter. We evaluate our approach on three Twitter datasets using three different sentiment lexicons. Results show that our approach significantly outperforms two lexicon baselines. Results are competitive but inconclusive when comparing to state-of-art SentiStrength, and vary from one dataset to another. SentiCircle outperforms SentiStrength in accuracy on average, but falls marginally behind in F-measure

    GALEX J201337.6+092801: The lowest gravity subdwarf B pulsator

    Full text link
    We present the recent discovery of a new subdwarf B variable (sdBV), with an exceptionally low surface gravity. Our spectroscopy of J20136+0928 places it at Teff = 32100 +/- 500, log(g) = 5.15 +/- 0.10, and log(He/H) = -2.8 +/- 0.1. With a magnitude of B = 12.0, it is the second brightest V361 Hya star ever found. Photometry from three different observatories reveals a temporal spectrum with eleven clearly detected periods in the range 376 to 566 s, and at least five more close to our detection limit. These periods are unusually long for the V361 Hya class of short-period sdBV pulsators, but not unreasonable for p- and g-modes close to the radial fundamental, given its low surface gravity. Of the ~50 short period sdB pulsators known to date, only a single one has been found to have comparable spectroscopic parameters to J20136+0928. This is the enigmatic high-amplitude pulsator V338 Ser, and we conclude that J20136+0928 is the second example of this rare subclass of sdB pulsators located well above the canonical extreme horizontal branch in the HR diagram.Comment: 5 pages, accepted for publication in ApJ Letter

    Interval forecasts based on regression trees for streaming data

    Get PDF
    In forecasting, we often require interval forecasts instead of just a specific point forecast. To track streaming data effectively, this interval forecast should reliably cover the observed data and yet be as narrow as possible. To achieve this, we propose two methods based on regression trees: one ensemble method and one method based on a single tree. For the ensemble method, we use weighted results from the most recent models, and for the single-tree method, we retain one model until it becomes necessary to train a new model. We propose a novel method to update the interval forecast adaptively using root mean square prediction errors calculated from the latest data batch. We use wavelet-transformed data to capture long time variable information and conditional inference trees for the underlying regression tree model. Results show that both methods perform well, having good coverage without the intervals being excessively wide. When the underlying data generation mechanism changes, their performance is initially affected but can recover relatively quickly as time proceeds. The method based on a single tree performs the best in computational (CPU) time compared to the ensemble method. When compared to ARIMA and GARCH modelling, our methods achieve better or similar coverage and width but require considerably less CPU time

    Automated Adaptation Strategies for Stream Learning

    Get PDF
    Automation of machine learning model development is increasingly becoming an established research area. While automated model selection and automated data pre-processing have been studied in depth, there is, however, a gap concerning automated model adaptation strategies when multiple strategies are available. Manually developing an adaptation strategy can be time consuming and costly. In this paper we address this issue by proposing the use of flexible adaptive mechanism deployment for automated development of adaptation strategies. Experimental results after using the proposed strategies with five adaptive algorithms on 36 datasets confirm their viability. These strategies achieve better or comparable performance to the custom adaptation strategies and the repeated deployment of any single adaptive mechanism

    Enhancing discrete-event simulation with big data analytics: a review

    Get PDF
    This article presents a literature review of the use of the OR technique of discrete-event simulation (DES) in conjunction with the big data analytics (BDA) approaches of data mining, machine learning, data farming, visual analytics, and process mining. The two areas are quite distinct. DES represents a mature OR tool using a graphical interface to produce an industry strength process modelling capability. The review reflects this and covers commercial off-the-shelf DES software used in an organisational setting. On the contrary the analytics techniques considered are in the domain of the data scientist and usually involve coding of algorithms to provide outputs derived from big data. Despite this divergence the review identifies a small but emerging literature of use-cases and from this a framework is derived for a DES development methodology that incorporates the use of these analytics techniques. The review finds scope for two new categories of simulation and analytics use: an enhanced capability for DES from the use of BDA at the main stages of the DES methodology as well as the use of DES in a data farming role to drive BDA techniques
    • …
    corecore