1,097 research outputs found

    Initial-Final-State Interference in the Z line-shape

    Get PDF
    The uncertainty in the determination of the Z line-shape parameters coming from the precision of the calculation of the Initial-State Radiation and Initial--Final-State Interference is 2 10**(-4) for the total cross section sigma zero(had) at the Z peak, 0.15 MeV for the Z mass M Z, and 0.1 MeV for the Z width Gamma Z. Corrections to Initial--Final-State Interference beyond \Order{\alpha^1} are discussed.Comment: 10 pages LaTeX including 2 PostScript figure

    Minimal Gauge Invariant Classes of Tree Diagrams in Gauge Theories

    Get PDF
    We describe the explicit construction of groves, the smallest gauge invariant classes of tree Feynman diagrams in gauge theories. The construction is valid for gauge theories with any number of group factors which may be mixed. It requires no summation over a complete gauge group multiplet of external matter fields. The method is therefore suitable for defining gauge invariant classes of Feynman diagrams for processes with many observed final state particles in the standard model and its extensions.Comment: 13 pages, RevTeX (EPS figures

    The analytic value of the sunrise self-mass with two equal masses and the external invariant equal to the third squared mass

    Get PDF
    We consider the two-loop self-mass sunrise amplitude with two equal masses MM and the external invariant equal to the square of the third mass mm in the usual dd-continuous dimensional regularization. We write a second order differential equation for the amplitude in x=m/Mx=m/M and show as solve it in close analytic form. As a result, all the coefficients of the Laurent expansion in (d4)(d-4) of the amplitude are expressed in terms of harmonic polylogarithms of argument xx and increasing weight. As a by product, we give the explicit analytic expressions of the value of the amplitude at x=1x=1, corresponding to the on-mass-shell sunrise amplitude in the equal mass case, up to the (d4)5(d-4)^5 term included.Comment: 11 pages, 2 figures. Added Eq. (5.20) and reference [4

    Numerical evaluation of the general massive 2-loop sunrise self-mass master integrals from differential equations

    Get PDF
    The system of 4 differential equations in the external invariant satisfied by the 4 master integrals of the general massive 2-loop sunrise self-mass diagram is solved by the Runge-Kutta method in the complex plane. The method, whose features are discussed in details, offers a reliable and robust approach to the direct and precise numerical evaluation of Feynman graph integrals.Comment: 1+21 pages, Latex, 5 ps-figure

    Weyl-van-der-Waerden formalism for helicity amplitudes of massive particles

    Get PDF
    The Weyl-van-der-Waerden spinor technique for calculating helicity amplitudes of massive and massless particles is presented in a form that is particularly well suited to a direct implementation in computer algebra. Moreover, we explain how to exploit discrete symmetries and how to avoid unphysical poles in amplitudes in practice. The efficiency of the formalism is demonstrated by giving explicit compact results for the helicity amplitudes of the processes gamma gamma -> f fbar, f fbar -> gamma gamma gamma, mu^- mu^+ -> f fbar gamma.Comment: 24 pages, late

    Counting loop diagrams: computational complexity of higher-order amplitude evaluation

    Get PDF
    We discuss the computational complexity of the perturbative evaluation of scattering amplitudes, both by the Caravaglios-Moretti algorithm and by direct evaluation of the individual diagrams. For a self-interacting scalar theory, we determine the complexity as a function of the number of external legs. We describe a method for obtaining the number of topologically inequivalent Feynman graphs containing closed loops, and apply this to one- and two-loop amplitudes. We also compute the number of graphs weighted by their symmetry factors, thus arriving at exact and asymptotic estimates for the average symmetry factor of diagrams. We present results for the asymptotic number of diagrams up to 10 loops, and prove that the average symmetry factor approaches unity as the number of external legs becomes large.Comment: 27 pages, 17 table

    The lowest order inelastic QED processes at polarized photon-electron high energy collisions

    Full text link
    The compact expressions for cross sections of photoproduction of a pair of charged particles e+,e\mathrm{e}^+,\mathrm{e}^-; μ+,μ\mu^+,\mu^-; π+,π\pi^+,\pi^- as well as the double Compton scattering process are given. The explicit analytic expressions for the case of polarized photon and the initial electron in the kinematics when all the particles can be considered as a massless ones are presented. The photon polarization is described in the terms of Stokes parameters.Comment: LaTeX2e, 9 page

    Numerical evaluation of the general massive 2-loop 4-denominator self-mass master integral from differential equations

    Full text link
    The differential equation in the external invariant p^2 satisfied by the master integral of the general massive 2-loop 4-denominator self-mass diagram is exploited and the expansion of the master integral at p^2=0 is obtained analytically. The system composed by this differential equation with those of the master integrals related to the general massive 2-loop sunrise diagram is numerically solved by the Runge-Kutta method in the complex p^2 plane. A numerical method to obtain results for values of p^2 at and close to thresholds and pseudo-thresholds is discussed in details.Comment: Latex, 20 pages, 7 figure
    corecore